Thermal Process Units and TPU Baghouse PM and Lead Emissions Test Report

Behr Iron & Metal - Rockford, Illinois

October 17, 2014

R11379

Prepared for:
Behr Iron & Metal
1100 Seminary Street
Rockford, Illinois 61104
Attn: Mr. Ron Coupar – EHS Manager

Submitted To:

Illinois Environmental Protection Agency
Division of Air Pollution Control
Compliance Enforcement Section (#40)
P.O. Box 19276
Springfield, Illinois 62794-9276

Prepared by: RK & Associates, Inc.

2 South 631 Route 59 Suite B Warrenville, Illinois 60555 Phone: 630-393-9000

Fax: 630-393-9111

This Page Left Blank

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1 F	Facility Location	1
	1.2 F	Facility Contact Information	1
	1.3	Cest Participants	1
	1	.3.1 IEPA Representatives	2
2.0	PRO	CESS DESCRIPTION	7
	2.1	Chermal Process Units 1 and 2	7
	2.2	Thermal Oxidizer	8
	2.3 H	Evaporative Quench	8
	2.4	PU Baghouse	9
	2.5	Sampling Locations	9
3.0	TES1	RESULTS	11
	3.1 N	Methods	11
	3.2 I	Demonstrated Emission Factor	11
	3	2.1 TPU Baghouse Inlet	11
	3	2.2.2 TPU Baghouse Exhaust Stack	12
	3.3 I	Permitted Emission Rates	16
TAI	BLES		
Tab	le 2-1	TPU Production Data from Compliance Demonstration Testing	8
Tab	le 2-2	Average Thermal Oxidizer Temperature Readings	8
Tab	le 2-3	Average Evaporative Quench Temperature Readings	9
Tab	le 2-4	TPU Baghouse Operating Data	9
Tab	le 3-1a	TPU Baghouse Inlet Operating Data	12
Tab	le 3-1b	TPU Baghouse Inlet, Uncontrolled PM and Lead Emissions and Emission Factor	12
Tab	le 3-2a	TPU Baghouse Exhaust Stack Operating Data	13
Tab	le 3-2b	TPU Baghouse Exhaust Stack, Controlled PM and Lead Emissions and Emission Factor	13
Tab	le 3-3	Summary of PM and Lead Emissions Testing of Thermal Processing	
		Units Controlled by an Oxidizer, Evaporative Quench and Baghouse	14
Tab	le 3-4	Thermal Process Units Demonstrated PM and Pb Emission Rates	14
Tab	le 3-5	Facility Permitted Emission Rates.	14

TABLE OF CONTENTS

FIGURES

Figure 1	Site Location Map	3
Figure 2	Facility Map	5
Figure 3	Sample Locations of PM and Lead Emissions Testing of Thermal Process	
	Units Controlled by a Thermal Oxidizer, Evaporative Quench and Baghouse	15

APPENDICES

APPENDIX A MOSTARDI PLATT TEST REPORT APPENDIX B TPU PROCESS OPERATING DATA

1.0 INTRODUCTION

Behr Iron & Metal (Behr) retained Mostardi Platt to perform lead (Pb) and particulate (PM) emission testing on the Thermal Process Units and the TPU Baghouse. Three (3) 2-hour runs were performed at each sampling location in accordance with USEPA Methods 5 and 12, Title 40, *Code of Federal Regulations*, Part 60, Appendix A. See Figure 3 for sampling point locations.

Testing included collecting operational data for each run, such as damper position and amount of processed material and evaluating PM and Lead emissions at each sampling location.

1.1 Facility Location

Behr Iron & Metal is located at 1100 Seminary Street in Rockford, Illinois as shown in Figure 1. A facility map is presented in Figure 2. Facility contact information is provided in Section 1.2 below.

1.2 Facility Contact Information

Business Name: Behr Iron & Metal

Source Location: 1100 Seminary Street–Rockford, Illinois 61104

Rockford Northwest Township - Winnebago County Illinois

<u>Latitude/Longitude:</u> 42° 14' 28.48" N / 89° 06" 00.15" W – Front Gate

Office/Mailing Address: 1100 Seminary Street, Rockford, Illinois 61104

Facility Contact: Mr. Ron Coupar – EHS Manager

815-987-2770 – <u>rcoupar@behrim.com</u>

IEPA Site ID No.: 201030AYB

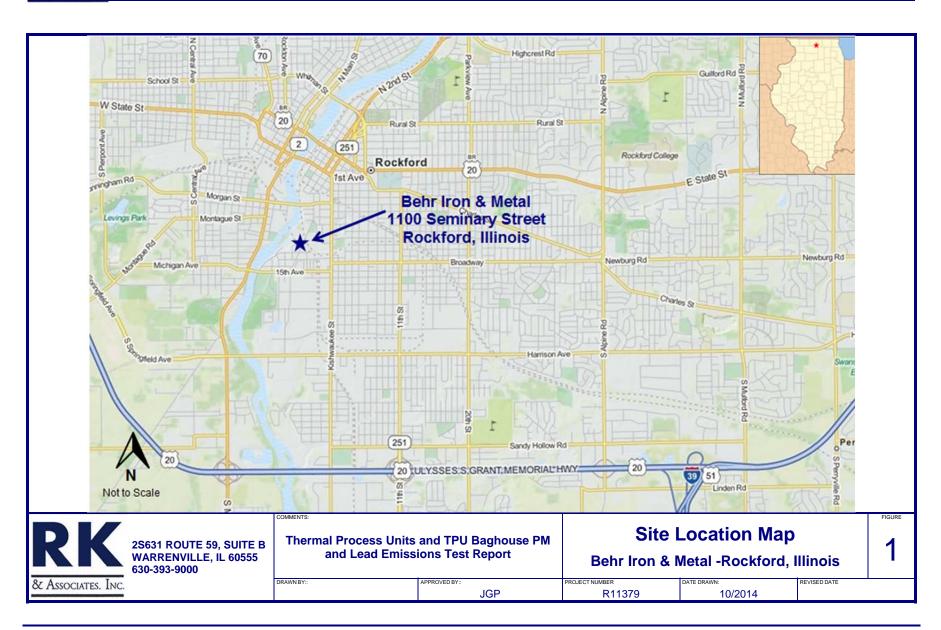
SIC Code: 5093 – Scrap and Waste Materials

NAICS Code: 423930 – Recyclable Material Merchant Wholesalers

1.3 Test Participants

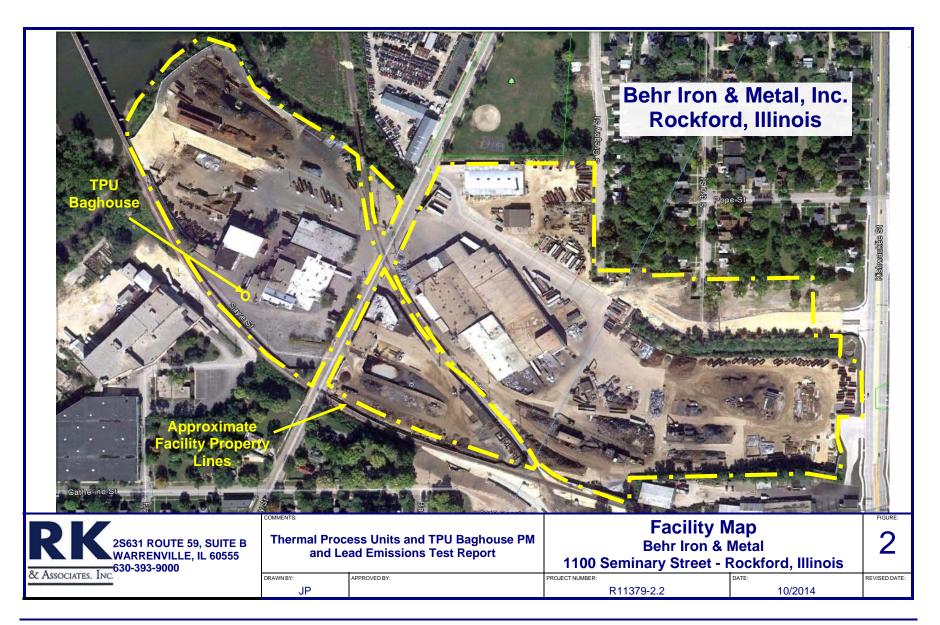
Behr's technical representative for this test program was Mr. Ron Coupar, EHS Manager. Questions regarding the physical operations at the facility may be directed to Mr. Coupar at (815) 987-2770.

Behr retained Mostardi Platt for conducting sample collection and emission sample analyses.


Questions regarding this test report may be directed to Mr. John Pinion at (630) 393-9000.

1.3.1 IEPA Representatives

Although Behr sent out notices of TPU testing to IEPA, testing of the TPU Baghouse was not a permitted requirement and was therefore not witnessed by a IEPA representative.



This Page Left Blank

This Page Left Blank

2.0 PROCESS DESCRIPTION

The following units are connected to the TPU Baghouse (Control Point No.: 0006):

- Thermal Process Units 1 & 2 (Emission Point No.: 0013)
- Rotary Dryer (Emission Point No.: 0014)
- Oxidizer
- Evaporative Quench

Thermal Process Units 1 and 2 are the only sources of lead emissions connected to the TPU Baghouse.

Thermal Process Units 1 and 2 were operated during this test under typical operating conditions (temperature, differential pressure, and throughput). PM and Pb emissions at the inlet of the TPU Baghouse include emissions from these sources. The Rotary Dryer was not operated during this test.

2.1 Thermal Process Units 1 and 2

Scrap wire of various sizes and types are placed in metal baskets within the thermal process units. The primary material processed in the TPUs is lead shielded copper cable (40% Pb by weight). Natural gas burners are used to heat the cable in a reduced oxygen atmosphere to volatize and remove the insulating layers. Melted lead and ash is collected for further processing.

Negative pressure from baghouse fan pulls process air and emissions from the TPUs through a common thermal oxidizer, evaporative quench chamber and baghouse. System is completely enclosed.

Data collected during testing of the Thermal Process Units includes:

- Charge Weight
- Process Length
- Chamber Temperature
- Chamber Pressure Reading

See Table 2-1 for TPU production data summary.

Table 2-1

TPU Production Data from Comliance Demonstration Testing

Behr Iron & Metal- Rockford Facility

		TPU	J-A	TPI	J-B
Parameter	Unit	Charge 1	Charge 2	Charge 1	Charge 2
Start Time		10:40	14:20	9:10	12:20
Stop Time		12:45	16:25	10:40	14:20
Process Time	hrs	2.07	2.08	1.50	2.00
Average Chamber Temp.	۰F	1,197	1,366	1,138	1,173
Weight	LB	1,224	1,212	1,198	1,258
Weight Processed	ton/hr	0.30	0.29	0.40	0.31
Average Process Rate	ton/hr		0.29		0.36

2.2 Thermal Oxidizer

The exhaust gas from the TPU units passes through the Thermal Oxidizer. Contaminants within the exhaust gas react with oxygen in a temperature controlled environment to destroy VOCs before discharging it back into the atmosphere. What is released is an innocuous emission of CO_2 and water vapor.

Thermal Oxidizer temperature readings were recorded during testing of TPU 1 & 2 and the TPU Baghouse; see Table 2-2 below. Chamber temperature must be maintained above 1,450°F during material processing.

Table 2-2
Average Thermal Oxidizer Temperature Readings
Behr Iron & Metal - Rockford Facility

Parameter	Run 1	Run 2	Run 3	Average
Temperature (°F)	1,587	1,615	1,524	1,575

2.3 Evaporative Quench

The hot exhaust stream from the Oxidizer passes through the quench prior to entering the Baghouse. The hot exhaust gas is cooled by the evaporation of water in the exhaust gas. Exhaust gas to the Baghouse may not exceed 500°F.

Evaporative Quench temperature readings were recorded during testing of TPU 1 & 2 and the TPU Baghouse; see Table 2-3 below.

Table 2-3

Average Evaporative Quench Temperature Readings

Behr Iron & Metal - Rockford Facility

Parameter	Run 1	Run 2	Run 3	Average
Temperature (°F)	441	444	447	444

2.4 TPU Baghouse

Contaminated gas enters the baghouse where an inlet baffle evenly distributes the gas to the filter bags permitting the heavier particulate to drop out into the hopper. The lighter remaining particles are carried with the gas stream toward the filter bags.

As the gas passes through the filter bags, particulate is collected on the outside surface of the bags and the particulate free gases are exhausted from the unit through the clean air plenum and into the ductwork to be exhausted through the stack.

Collected dust is deposited in the pyramidal hopper and then discharged through a rotary airlock.

Data collected during testing of the TPU Baghouse for each run includes:

- Pressure Drop
- Temperature

See Table 2-4 for a summary of TPU Baghouse operation data.

Table 2-4
TPU Bahouse Operating Data
Behr Iron & Metal - Rockford Facility

Parameter	Run 1	Run 2	Run 3	Average
Baghouse Temp. (°F)	354	349	362	355
Exhaust Stack Temp. (°F)	282	289	344	305
Pressure Drop (inches H2O)	2.11	2.49	3.59	2.73

2.5 Sampling Locations

Emission sampling locations of the TPU Baghouse and the units listed above are as follows:

- TPU Baghouse Inlet
- TPU Baghouse Outlet

See Figure 3 for sampling location and unit configuration.

This Page Left Blank

3.0 TEST RESULTS

The following sections provide a summary of testing results from the Thermal Process Units and the TPU Baghouse.

The data from each run of PM and Lead emission testing of the Thermal Process Units and the TPU Baghouse is presented in Table 3-3 below.

Sampling locations of PM and Lead emission testing of the Thermal Process Units and the TPU Baghouse are shown in Figure 3 and includes a summary table of data averaged from the three test runs. Damper positions depicted in Figure 3 indicate if they were open or shut during testing.

PM and Lead Testing of the TPUs and TPU Baghouse occurred while the emission units were under typical operating conditions (throughput, differential pressure, and temperature). The rotary dryer was not operated during testing.

PM and lead emission at the inlet of the baghouse demonstrate uncontrolled emission from TPUs 1 and 2. Emissions at the baghouse exhaust stack represent controlled TPU PM and lead emissions.

3.1 Methods

Particulate emissions were evaluated using Test Methods 1 through 5 from 40 CFR Appendix A-3 to Part 60. Lead emissions were evaluated using Test Method 12 from 40 CFR Appendix A-5 to Part 60.

3.2 Demonstrated Emission Factor

PM and Lead emission factors for the TPU Baghouse are based upon weight of cable processed and length of processing time within the TPUs coupled with baghouse PM and Lead emissions evaluated using the methods mentioned above.

The following sections present the demonstrated PM and Lead emission factors for the TPU Baghouse Inlet and Exhaust Stack representing uncontrolled and controlled PM and lead emissions; respectively.

3.2.1 TPU Baghouse Inlet

Table 3-1a summarizes the weight of cable processed and length of processing time within the TPUs that correspond to the TPU Baghouse Inlet test runs.

Table 3-1a

TPU Baghouse Inlet Operating Data
Behr Iron & Metal - Rockford Facility

Parameter	Run 1	Run 2	Run 3	Average
Start Time	9:20	11:55	14:20	
Stop Time	11:25	13:58	16:24	
Process Time (hrs)	2.08	2.05	2.07	2.07
Weight Processed (Lb)	1554	1590	1212	1452
LB/hr	746	776	586	703
ton/hr	0.37	0.39	0.29	0.35

Table 3-1b presents the uncontrolled TPU PM and Lead emission factors associated with the TPU Baghouse Inlet.

Table 3-1b

TPU Baghouse Inlet

Uncontrolled TPU PM and Pb Emissions and Emission Factor

	Parameter	Run 1	Run 2	Run 3	Average	
	hrs	2.08	2.05	2.07	2.07	
	Annual Operation	hrs/yr		87	60	
	Weight Processed (cable)	LB	1208	1487	1212	1302
	Weight Processed (cable)	LB/hr	579.84	725.29	586.45	630.53
	Weight Processed (cable)			0.36	0.29	0.32
	Weight Processed (cable)	tpy	2,539.70	3,176.77	2,568.66	2,761.71
Uncontrolled	PM Emissions	lb/hr	0.738	0.704	0.849	0.764
	PM Emission Factor	lb PM/ton	2.546	1.941	2.895	2.461
Uncontrolled	Pb Emissions	lb/hr	0.057	0.061	0.076	0.065
	Pb Emission Factor	lb Pb/ton	0.196	0.168	0.258	0.207

3.2.2 TPU Baghouse Exhaust Stack

Table 3-2a summarizes the weight of cable processed and length of processing time within the TPUs that correspond to the TPU Baghouse Exhaust Stack test runs.

Table 3-2a

TPU Baghouse Exhaust Stack Operating Data
Behr Iron & Metal - Rockford Facility

Parameter	Run 1	Run 2	Run 3	Overall
Start Time	9:20	11:55	14:20	
Stop Time	11:27	13:58	16:23	
Process Time (hrs)	2.12	2.05	2.05	2.07
Weight Processed (Lb)	1603	1590	1212	1469
LB/hr	758	776	591	708
ton/hr	0.38	0.39	0.30	0.35

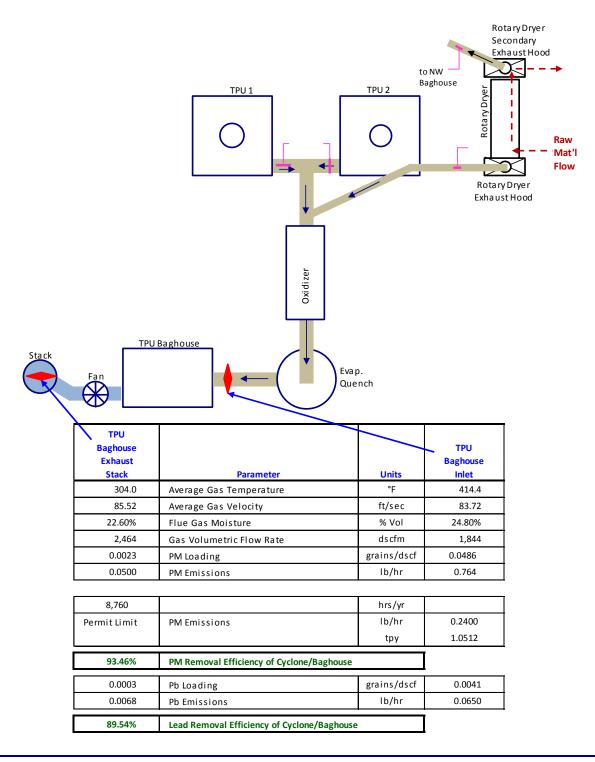
Table 3-2b presents the controlled TPU PM and Lead emission factors associated with the TPU Baghouse Exhaust Stack.

Table 3-2b

TPU Baghouse Exhaust Stack

Controlled TPU PM and Pb Emissions and Emission Factor

	Parameter	Run 1	Run 2	Run 3	Average		
Process Time			2.12	2.05	2.05	2.07	
	Annual Operation	hrs/yr		87	60		
	Weight Processed (cable)	LB	1209	1487	1212	1302	
	Weight Processed (cable)	LB/hr	570.99	725.29	591.22	629.17	
	tph	0.29	0.36	0.30	0.31		
	tpy	2,500.93	3,176.77	2,589.54	2,755.75		
Controlled	PM Emissions	lb/hr	0.059	0.020	0.072	0.050	
	PM Emission Factor	lb PM/ton	0.2067	0.0552	0.2436	0.1685	
	PM Control Efficiency	%		93	%		
Controlled	Pb Emissions	lb/hr	0.00550	0.00720	0.00780	0.00680	
	Pb Emission Factor	lb Pb/ton	0.0193	0.0199	0.0264	0.0218	
	Pb Control Efficiency	%	90%				


Summary of PM and Lead Emissions Testing of Thermal Processing Units Controlled by an Oxidizer, Evaporative Quench and Baghouse Behr Iron & Metal - Rockford, Illinois

TPU Baghouse Inlet Behr Iron & Metal - Rockford, Illinois TPU Baghouse Outlet Behr Iron & Metal - Rockford, Illinois

Parameter	Units	Run 1	Run 2	Run 3	Average		Run 1	Run 2	Run 3	Average
Source Condition		Normal	Normal	Normal			Normal	Normal	Normal	
Date		10/2/2014	10/2/2014	10/2/2014	•		10/2/2014	10/2/2014	10/2/2014	
Run Start Time		9:20	11:55	14:20			9:20	11:55	2:20	
Run End Time		11:25	13:58	16:24			11:27	1:58	4:23	
			Stack Co	nditions				Stack Co	nditions	
Average Gas Temperature	°F	398.9	416.3	427.9	414.4	.!	281.6	284.7	345.8	304
Flue Gas Moisture	% Vol	28.10%	19.40%	27.00%	24.80%		19.70%	26.30%	21.80%	22.60%
Average Flue Pressure	in Hg	28.96	28.96	28.96	28.96		29.33	29.33	29.33	29.33
Gas Sample Volume	dscf	76.665	85.005	89.48	83.717		76.65	76.267	103.628	85.515
Average Gas Velocity	ft/sec	26.586	29.157	31.567	29.103		38.701	39.441	55.428	44.523
Gas Volumetric Flow Rate	acfm	3,837	4,208	4,556	4,200		4,103	4,182	5,877	4,721
Gas Volumetric Flow Rate	dscfm	1,642	1,977	1,913	1,844		2,300	2,141	2,952	2,464
Gas Volumetric Flow Rate	scfm	2,283	2,454	2,622	2,453		2,864	2,906	3,775	3,182
Average % CO ₂	% Vol dry	3.8	4.3	3.6	3.9		2.1	2.4	2.9	2.5
Average % O ₂	% Vol dry	15.4	14.7	14.4	14.8		17.9	16.5	16	16.8
Isokinetic Variance		108.4	99.8	108.6	105.6		99.4	106.2	104.7	103.4
		Filterab	le Particulate	Matter (Met	hod 5)		Filteral	ole Particulate	Matter (Met	nod 5)
Grams Collected	gr	0.2607	0.2287	0.3004	0.2633		0.0148	0.0055	0.0192	0.0132
PM Concentration	grains/acfm	0.0225	0.0195	0.0217	0.0212		0.0017	0.0006	0.0014	0.0012
PM Concentration	grains/dscf	0.0525	0.0415	0.0518	0.0486		0.003	0.0011	0.0029	0.0023
PM Mass Emission Rate	lb/hr	0.738	0.704	0.849	0.764		0.059	0.02	0.072	0.05
		Lead Emissions Data (Method 12)					Lea	d Emissions D	ata (Method 1	2)
Grams Collected	gr	0.0205481	1.98E-02	0.026748	0.022381	•	0.0013981	0.0019381	0.002078	1.81E-03
Lead Concentration	ppb	1097.983	956.523	1224.581	1093.029		74.722	104.102	82.151	86.992
Lead Concentration	ug/dscm	9465.18	8245.72	10556.52	9422.47		644.14	897.41	708.18	749.91
Lead Mass Emission Rate	lb/hr	0.05682	0.0611	0.0756	0.065		0.0055	0.0072	0.0078	0.0068

Figure 3
Sample Locations of PM and Lead Emissions Testing of Thermal Process Units
Controlled by a Thermal Oxidizer, Evaporative Quench and Baghouse
Behr Iron & Metal - Rockford, Illinois

3.3 Permitted Emission Rates

Table 3-4 presents the demonstrated emission rates from PM and lead emission testing of the thermal process units. Table 3-5 presents current facility permitted emission rates. Comparison of the two tables shows the TPU PM emission rates are below permitted levels.

Table 3-4
Thermal Process Units Demonstrated PM and Lead Emission Rates
Behr Iron & Metal - Rockford Facility

		Demo	Demonstrated Emission Rate				Demonstrated		
	Demonstrated	Uncontrolled		Controlled		Control Efficien			
	Throughput	lb/hr		lb/hr		%			
Emission Unit	tph	PM	Pb	PM	Pb	PM	Pb		
TPU 1&2	0.320	0.764	0.065	0.050	0.007	93%	90%		

Table 3-5
Facility Permitted Emission Rates
Lifetime Operating Permit (No.: 85030079)
Behr Iron & Metal - Rockford Facility

								Emission	Factor
								Based on I	Permitted
					Permitted Emis	ssions		Throughput a	nd Emissions
	Perm	nitted Throughp	ut	PM		Lead		PM	Lead
Emission Unit	(tons/hr)	hr/yr	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/ton)	(lb/ton)
Rotary Dryer	1.06	8,760	9,286	0.52	2.30	-	-	0.4906	-
TPU 1	0.25	8,760	2,190	0.24	1.06	-	-	0.9600	-
TPU 2	0.25	8,760	2,190	0.24	1.06	-	-	0.9600	-
Sweeco Sand Separator	0.25	8,760	2,190	0.24	1.06	-	-	0.9600	-
Foundry Sand Separator	0.75	8,760	6,570	0.44	1.91	-	-	0.5867	-
Lead Pot 2	1.05	8,760	9,198	0.52	2.28	0.0021	0.0100	0.4952	0.0020
Lead Pot 3	1.05	8,760	9,198	0.52	2.28	0.0021	0.0100	0.4952	0.0020
Crucible Furnace	0.225	8,760	1,971	0.23	1.00	0.0000	0.0000	1.0222	-
Brass Sorting Table	0.310	8,760	2,716	0.27	1.19	0.0140	0.0610	0.8710	0.0452
Scrap Hammermill w/ Cyclone	9.06	8,760	79,366	1.32	5.78	-	-	0.1457	-
Babbit Pot	0.750	8,760	6,570	0.44	1.91	0.0015	0.0066	0.5867	0.0020
Lead Recovery Rotary Furnace	1.00	95	95	0.700	0.034	0.2000	0.0080	70 7	16 7
					21.8635	-	0.0956	-	

This Page Left Blank

Thermal Process Units and TPU Baghouse PM and Lead Emissions Test Report

Behr Iron & Metal - Rockford, Illinois

R11379

October 17, 2014

APPENDIX A MOSTARDI PLATT TEST REPORT

This Page Left Blank

Particulate Matter and Lead Emissions Compliance Test Report

Behr Iron and Metal Rockford Facility TPU Baghouse System Rockford, Illinois Report No. M143903C October 2, 2014

Particulate Matter and Lead Emissions Compliance Test Report

Behr Iron and Metal Rockford Facility TPU Baghouse System Rockford, Illinois October 2, 2014

Report Submittal Date November ___, 2014

© Copyright 2014 All rights reserved in Mostardi Platt

Report No. M143903C

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY Method 1 Traverse Point Determination Method 2 Volumetric Flowrate Determination Method 3A Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination Method 5 Filterable Particulate Matter Determination Method 12 Lead Determination	2
3.0 TEST RESULT SUMMARIES	4
4.0 CERTIFICATION	6
APPENDICES Appendix A – Plant Operating Data Appendix B - Test Section Diagram	
Appendix D - Calculation Nomenclature and Formulas	
Appendix F - Reference Method Test Data (Computerized Sheets)	
Appendix I - Calibration Data Appendix I - Gas Cylinder Certifications	

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a particulate matter and lead emissions test program for Behr Iron and Metal at their Rockford facility on the TPU Baghouse system in Rockford, Illinois on October 2, 2014. This report summarizes the results of the test program and test methods used.

The test locations, test date, and test parameters are summarized below.

TEST INFORMATION				
Test Locations	Test Date	Test Parameters		
TPU Baghouse Inlet	October 2,	Filterable Destinator Matter (FDM) and Load (Db)		
TPU Baghouse Outlet	2014	Filterable Particulate Matter (FPM) and Lead (Pb)		

The purpose of the test program was to determine FPM and Pb emissions and removal efficiency of the TPU Baghouse. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS SUMMARY					
Test Location	Test Parameter	Emission Rate, lb/hr			
TDI I Paghauga Inlet	FPM	0.764			
TPU Baghouse Inlet	Pb	0.0650			
TDU Dambaura Quitlet	FPM	0.050			
TPU Baghouse Outlet	Pb	0.0068			
REMOVAL EFFICIENCY SUMMARY					
Filterable Particulate Removal Efficiency, %					
93.5					
Lead Removal Efficiency, %					
89.5					

The Stationary Source Audit Sample Program audit sample was obtained from ERA and submitted for analysis to Maxxam Analytical. The result of the audit sample was compared to the assigned value by ERA and found to be acceptable. The audit sample result and evaluation is appended to this report.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION				
Location	Address	Contact		
Test Coordinator	RK & Associates, Inc. 2S631 Route 59, Suite B Warrenville, Illinois 60555	Mr. John Pinion Associate Engineer (630) 393-9000 x 208 jpinion@rka-inc.com		
Test Facility	Behr Iron & Metal 1100 Seminary Street Rockford, Illinois 61104	Mr. Ron Coupar Environmental Manager (815) 987-2770 rcoupar@behrim.com		
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Stuart Sands Project Manager (630) 993-2100 (phone) ssands@mp-mail.com		

The test crew consisted of Messrs. J. Howe, B. Terra, M. Yanz, T. Nelson, and S. Sands of Mostardi Platt.

2.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagrams are found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of electronic data for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION					
Upstream Downstream Number of Diameters Diameters Test Parameters Sampling Points					
TPU Baghouse Inlet	>0.5	>2.0		24	
TPU Baghouse Outlet	6.5	10.0	FPM, Pb	24	

Absence of cyclonic flow tests were performed prior to testing at each location and each location passed.

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating volumetric flow rate and particulate and lead emission rates on a lb/hr basis. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at

each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Flue gas molecular weight was determined in accordance with Method 3A. Servomex analyzers were used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter Determination

Flue gas filterable particulate matter concentrations and emission rates were determined in accordance with Method 5. The probe and filter housing were maintained at a temperature of 248°F +/- 25°F. An Environmental Supply Company, Inc. sampling train was used to sample flue gas at an isokinetic rate. Four impingers were utilized, the first two each containing 100 ml of 0.1N Nitric Acid (HNO₃), the third remained empty, and the fourth contained approximately 200 grams of silica gel. The impingers were weighed prior to and after each test run in order to determine moisture content of the stack gas. A minimum of 60 dry standard cubic feet was sampled for each run.

Particulate matter in the sample probe was recovered utilizing acetone; three passes of the probe brush through the entire probe was performed, followed by a visual inspection of the acetone exiting the probe. The acetone solution exiting the probe was clear, and therefore the wash was considered complete. The nozzle was then removed from the probe and cleaned in a similar manner, utilizing an appropriately sized nozzle brush. The filter and filter housing were recovered in a clean area. The filter housing was washed a minimum of three times with acetone and inspected for cleanliness, and the filter was placed in its corresponding petri dish. All surfaces were then rinsed with 0.1 N HNO₃ following Method 12 procedures. The acetone wash and the filter were labeled and marked, then analyzed at the Mostardi Platt Laboratory by Mostardi Platt personnel in accordance with the Method. Upon completion of the particulate analyses, filters and dried acetone washes were sent to Maxxam Analytics for lead analysis. All sample data analysis, are found in Appendix E. All of the equipment used is calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 12 Lead Determination

Flue gas inorganic lead emissions were determined in accordance with Method 12. An Environmental Supply Company, Inc. sampling train was used to sample flue gas, in conjunction with the above described Method 5 particulate sampling. Analysis of the lead samples collected were, performed by Maxxam Analytics. Laboratory sample analysis data are included in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in the Appendix H.

3.0 TEST RESULT SUMMARIES

Client: Behr Iron & Metal Facility: Rockford Facility
Test Location: TPU Baghouse Inlet

Test Method: 5/12

Source Condition Date	Normal 10/2/14	Normal 10/2/14	Normal 10/2/14		
Start Time	9:20	11:55	14:20		
End Time	11:25	13:58	16:24		
Life Time	Run 1	Run 2	Run 3	Average	
Stack C	Conditions	TKUIT Z	Ruito	Average	
Average Gas Temperature, °F	398.9	416.3	427.9	414.4	
Flue Gas Moisture, percent by volume	28.1%	19.4%	27.0%	24.8%	
Average Flue Pressure, in. Hg	28.96	28.96	28.96	28.96	
Gas Sample Volume, dscf	76.665	85.005	89.480	83.717	
Average Gas Velocity, ft/sec	26.586	29.157	31.567	29.103	
Gas Volumetric Flow Rate, acfm	3,837	4,208	4,556	4,200	
Gas Volumetric Flow Rate, dscfm	1,642	1,977	1,913	1,844	
Gas Volumetric Flow Rate, scfm	2,283	2,454	2,622	2,453	
Average %CO ₂ by volume, dry basis	3.8	4.3	3.6	3.9	
Average %O ₂ by volume, dry basis	15.4	14.7	14.4	14.8	
Isokinetic Variance	108.4	99.8	108.6	105.6	
Filterable Particula	ate Matter ((Method 5)			
grams collected	0.2607	0.2287	0.3004	0.2633	
grains/acf	0.0225	0.0195	0.0217	0.0212	
grains/dscf	0.0525	0.0415	0.0518	0.0486	
lb/hr	0.738	0.704	0.849	0.764	
Lead (Pb) Emissions					
ug of sample collected	20,548	19,848	26,748	22,381	
ppb	1,097.983	956.523	1,224.581	1,093.029	
ug/dscm	9,465.18	8,245.72	10,556.52	9,422.47	
lb/hr	0.0582	0.0611	0.0756	0.0650	

Client: Behr Iron & Metal Facility: Rockford Facility
Test Location: TPU Baghouse Outlet

Test Method: 5/12

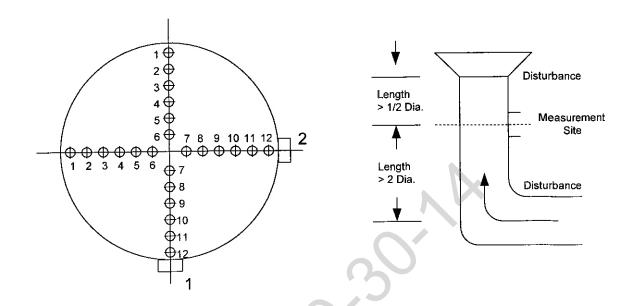
0 0			N1 1			
Source Condition	Normal	Normal	Normal			
Date	10/2/14	10/2/14	10/2/14			
Start Time	9:20	11:55	2:20			
End Time	11:27	1:58	4:23			
	Run 1	Run 2	Run 3	Average		
Stack C	onditions					
Average Gas Temperature, °F	281.6	284.7	345.8	304.0		
Flue Gas Moisture, percent by volume	19.7%	26.3%	21.8%	22.6%		
Average Flue Pressure, in. Hg	29.33	29.33	29.33	29.33		
Gas Sample Volume, dscf	76.650	76.267	103.628	85.515		
Average Gas Velocity, ft/sec	38.701	39.441	55.428	44.523		
Gas Volumetric Flow Rate, acfm	4,103	4,182	5,877	4,721		
Gas Volumetric Flow Rate, dscfm	2,300	2,141	2,952	2,464		
Gas Volumetric Flow Rate, scfm	2,864	2,906	3,775	3,182		
Average %CO ₂ by volume, dry basis	2.1	2.4	2.9	2.5		
Average %O ₂ by volume, dry basis	17.9	16.5	16.0	16.8		
Isokinetic Variance	99.4	106.2	104.7	103.4		
Filterable Parti	Filterable Particulate Matter (M5)					
grams collected	0.0148	0.0055	0.0192	0.0132		
grains/acf	0.0017	0.0006	0.0014	0.0012		
grains/dscf	0.0030	0.0011	0.0029	0.0023		
lb/hr	0.059	0.020	0.072	0.050		
Lead (Pb) Emission	S				
ug of sample collected	1,398	1,938	2,078	1,805		
ppb	74.722	104.102	82.151	86.992		
ug/dscm	644.14	897.41	708.18	749.91		
lb/hr	0.0055	0.0072	0.0078	0.0068		

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Behr Iron and Metal. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.


MOSTARDI PLATT	
	Program Manager
Stuart T. Sands	
Eric L. Ehlers	Quality Assurance

APPENDICES

Appendix A - Plant Operating Data

Appendix B - Test Section Diagrams

EQUAL AREA TRAVERSE FOR ROUND DUCTS

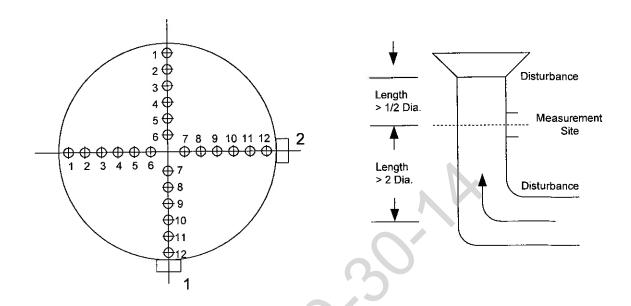
Job: Behr Iron & Metal

Rockford, Illinois

Date: October 2, 2014

Test Location: TPU Baghouse Inlet

Duct Diameter: 1.75 Feet


Duct Area: 2.405 Square Feet

No. Points Across Diameter: 12

No. of Ports: 2

Port Length: 6.0 Inches

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Behr Iron & Metal

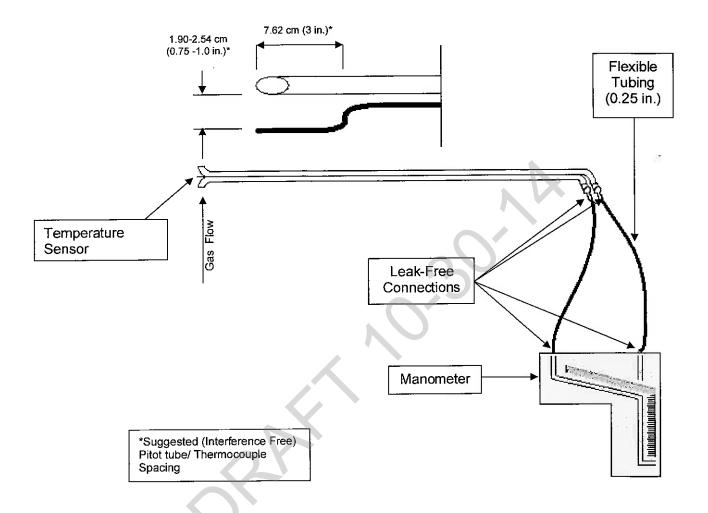
Rockford, Illinois

Date: October 2, 2014

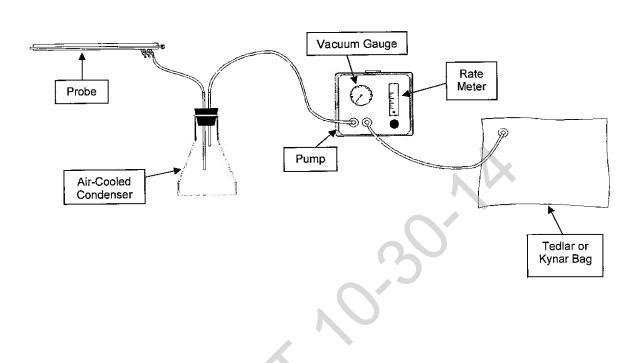
Test Location: TPU Baghouse Outlet

Duct Diameter: 1.5 Feet

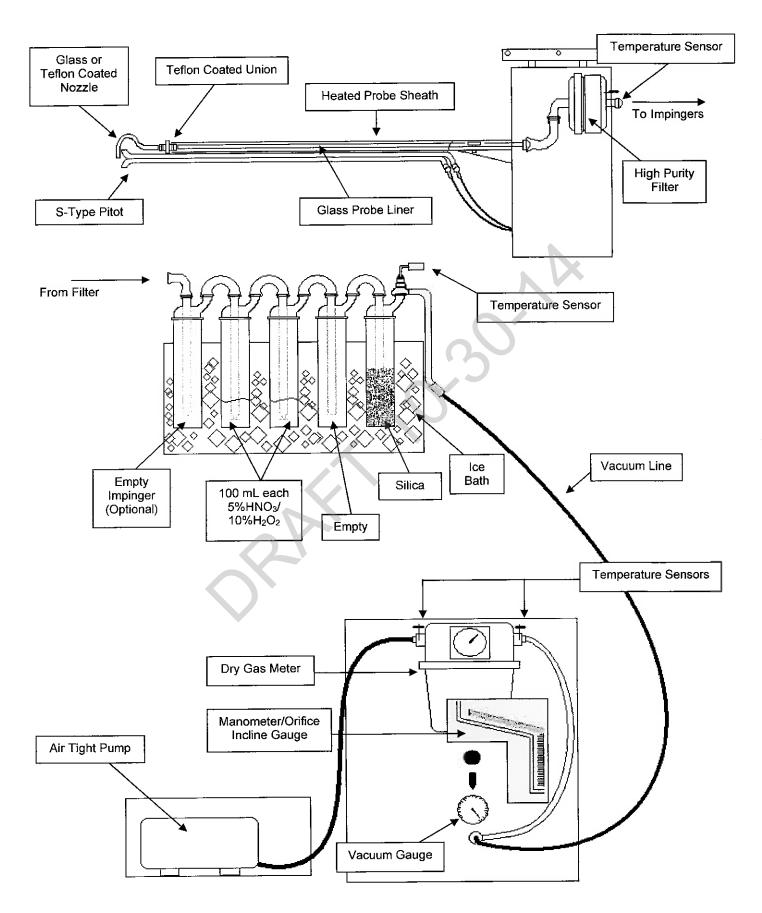
Duct Area: 1.767 Square Feet


No. Points Across Diameter: 12

No. of Ports: 2


Port Length: 6.0 Inches

Appendix C - Sample Train Diagrams


USEPA Method 2- Type S Pitot Tube Manometer Assembly

USEPA Method 3A - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing Tedlar Gas Bag

USEPA Method 5/12- Particulate Matter/Lead Sample Train Diagram

Appendix D - Calculation Nomenclature and Formulas

Client: Facility: Behr Iron & Metal Rockford Facility

Test Location:

TPU Baghouse Inlet

Run:

1

Date: 10/2/2014 Method: 5/12

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 3.8$$

 $%O_2 = 15.4$

 $%N_2 = 80.8$

Md = 29.224

Wet Molecular Weight

$$Ms = Md \times (1-Bws) + (18.0 \times Bws)$$

Bws = 0.281

Meter Volume at Standard Conditions

17.647 x Y x Vm x

(Pbar +DH/13.6)

Tm

Vm = 79.609 Tm = 538.1

Pbar = 29.00

Volume of Water Vapor Condensed

0.0471 x (net H₂O gain)

Moisture Content

Vm(std) = 76.665

Client: Facility: Behr Iron & Metal Rockford Facility TPU Baghouse Inlet

Test Location: Run:

1

Date: Method:

10/2/2014 5/12

Average Duct Velocity

Vs = 85.49 x Cp x Sqrt DP (avg) x (Ts (avg)/ (Ps x Ms))
$$^{1/2}$$

Volumetric Flow Rate (Actual Basis)

A = 2.405

Volumetric Flow Rate (Standard Basis)

Volumetric Flow Rate (Standard Dry Basis)

$$Qstd(dry) = Qstd x (1-Bws)$$

Bws ≈ 0.281

1,642

Isokinetic Variation:

%ISO =
$$\frac{0.0945 \times Ts \times Vm(std)}{Vs \times \theta \times An \times Ps \times (1-Bws)}$$

$$Vm(std) = 76.665$$

 $\theta = 120$

Client: Behr Iron & Metal
Facility: Rockford Facility
Test Location: TPU Baghouse Inlet

Run:

Date: 10/2/2014 Method: 5/12

PM Concentration:

This example represents the filterable fraction. For other fractions, use the obtained mn for that particulate fraction.

Co =
$$\frac{m_n \times 15.43}{Vm(std)}$$

 $m_n(q) = 0.2607 Vm(st)$

$$m_n (g) = 0.2607$$
 Vm(std) = 76.665
Co = 0.0525 gr/dscf

PM Emission Rate:

Emission Rate lb/hr =
$$\frac{\text{Co}}{7000}$$
 x Qstd(dry) x 60

Client: Behr iron & Metal Facility: **Rockford Facility** Test Location: **TPU Baghouse Inlet** Run: Date: 10/2/2014 Method: 5/12 Lead (Pb) Concentration: μg/m³= μg of Lead (Pb) Vm(std) x 0.02832 m³/ft³ 20548.10 Vm(std) = 76.665 μg/m'= 9465.18 Lead (Pb) Emission Rate: lb of Lead (Pb) = μg of sample x 10⁻⁶ grams/μg 453.6 grams/lb lb of Lead (Pb) = 4.53E-05 dscfm = 1,642 Emission Rate lb/hr = Ib of Lead (Pb) dscfm 60 min/hr

Vm(std)

Emission Rate lb/hr = 0.058

Isokinetic Nomenclature

```
A = Cross-sectional area of stack or duct, square feet
```

A_n = Cross-sectional area of nozzle, square feet

B_{ws} = Water vapor in gas stream, by volume

C_a = Acetone blank residue concentration, g/g

Cacf = Concentration of particulate matter in gas stream at actual conditions, gr/acf

 C_0 = Pitot tube coefficient

C_s = Concentration of particulate matter in gas stream, dry basis, corrected to standard conditions, gr/dscf

IKV = Isokinetic sampling variance, must be 90.0 % ≤ IKV ≤ 110.0%

M_d = Dry molecular weight of gas, lb/lb-mole

M_s = Molecular weight of gas, wet basis, lb/lb-mole

M_w = Molecular weight of water, 18.0 lb/lb-mole

m_a = Mass of residue of acetone after evaporation, grams

P_{bar} = Barometric pressure at testing site, inches mercury

P_g = Static pressure of gas, inches mercury (inches water/13.6)

 P_s^* = Absolute pressure of gas, inches mercury = $P_{bar} + P_g$

P_{std} = Standard absolute pressure, 29.92 inches mercury

Q_{acfm} = Actual volumetric gas flow rate, acfm

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscfh

R = Ideal gas constant, 21.85 inches mercury cubic foot/°R-lb-mole

T_m = Dry gas meter temperature, °R

T_s = Gas temperature, °R

T_{std} = Absolute temperature, 528°R

V_a = Volume of acetone blank, ml

V_{aw} = Volume of acetone used in wash, ml |

W_a = Weight of residue in acetone wash, grams

m_n = Total amount of particulate matter collected, grams

V_{1c} = Total volume of liquid collected in impingers and silica gel, ml

V_m = Volume of gas sample as measured by dry gas meter, dcf

 $V_{m(std)} = Volume of gas sample measured by dry gas meter, corrected to standard conditions, dscf$

v_s = Gas velocity, ft/sec

 $V_{w(std)}$ = Volume of water vapor in gas sample, corrected to standard conditions, scf

Y = Dry gas meter calibration factor

ΔH = Average pressure differential across the orifice meter, inches water

 Δp = Velocity head of gas, inches water

 ρ_a = Density of acetone, 0.7855 g/ml (average)

 ρ_w = Density of water, 0.002201 lb/ml

 θ = Total sampling time, minutes

 $K_1 = 17.647 \, {}^{\circ}\text{R/in. Hg}$

 $K_2 = 0.04707 \text{ ft}^3/\text{ml}$

 $\bar{K_4} = 0.09450/100 = 0.000945$

 K_p = Pitot tube constant, 85.49 $\frac{ft}{sec} \left[\frac{(lb/lb-mole)(in. Hg)}{(^oR)(in. H_2O)} \right]^{1/2}$

%EA = Percent excess air

%CO₂ = Percent carbon dioxide by volume, dry basis

%O₂ = Percent oxygen by volume, dry basis

%CO = Percent carbon monoxide by volume, dry basis

%N₂ = Percent nitrogen by volume, dry basis

 $0.264 = Ratio of O_2 to N_2 in air, v/v$

28 = Molecular weight of N₂ or CO

32 = Molecular weight of O₂ 44 ≡ Molecular weight of CO₂

13.6 = Specific gravity of mercury (Hg)

Isokinetic Calculation Formulas

1.
$$V_{w(std)} = V_{lc} \left(\frac{\rho_w}{M_w} \right) \left(\frac{RT_{std}}{P_{std}} \right) = K_2 V_{lc}$$

$$2. \ V_{m(std)} = V_m Y \left(\frac{T_{std}}{T_m}\right) \left(\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{P_{std}}\right) = K_1 V_m Y \frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_m}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d(1-B_{ws}) + 18.0(B_{ws})$$

6.
$$C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

$$8.~C_{acf} = 15.43 K_i \left(\frac{m_n P_s}{V_{w(std)} + V_{m(std)} T_s} \right)$$

9.
$$C_S = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_s M_s}}$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1-B_{ws}) v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right) A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14.
$$IKV = \frac{T_s V_{m(std)} P_{std}}{T_{std} v_s \theta A_n P_s 60 (1 - B_{ws})} = K_4 \frac{T_s V_{m(std)}}{P_s v_s A_n \theta (1 - B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5 \%CO)}{0.264 \%N_2 - (\%O_2 - 0.5 \%CO)}\right) \times 100$$

Volumetric Flow Nomenclature

A = Cross-sectional area of stack or duct, ft2

Bws = Water vapor in gas stream, proportion by volume

Cp = Pitot tube coefficient, dimensionless

Md = Dry molecular weight of gas, lb/lb-mole

Ms = Molecular weight of gas, wet basis, lb/lb-mole

Mw = Molecular weight of water, 18.0 lb/lb-mole

Pbar = Barometric pressure at testing site, in. Hg

Pg = Static pressure of gas, in. Hg (in. H2O/13.6)

DH= Static pressure of gas, in.H2O

Ps = Absolute pressure of gas, in. Hg = Pbar + Pg

Pstd = Standard absolute pressure, 29.92 in. Hg

Acfm = Actual volumetric gas flow rate

Scfm= Volumetric gas flow rate, corrected to standard conditions

Dscfm = Standard volumetric flow rate, corrected to dry conditions

R = Ideal gas constant, 21.85 in. Hg-ft3/°R-lb-mole

Ts = Average stack gas temperature, °F

Tm = Average dry gas meter temperature, oF

Tstd = Standard absolute temperature, 528°R

vs = Gas velocity, ft/sec

Vm(std)= Volume of gas sampled, corrected to standard conditions, scf

Vw(std) = Volume of water vapor in gas sample, corrected to standard conditions, scf

Vic= Volume of liquid collected

Y = Dry gas meter calibration factor

 Δp = Velocity head of gas, in. H2O

 $K1 = 17.647 \,^{\circ}\text{R/in. Hg}$

%EA = Percent excess air

%CO2 = Percent carbon dioxide by volume, dry basis

%O2 = Percent oxygen by volume, dry basis

%N2 = Percent nitrogen by volume, dry basis

0.264 = Ratio of O2 to N2 in air, v/v

0.28 = Molecular weight of N2 or CO, divided by 100

0.32 = Molecular weight of O2 divided by 100

0.44 = Molecular weight of CO2 divided by 100

13.6 = Specific gravity of mercury (Hg)

Volumetric Air Flow Calculations

$$Vm (std) = 17.647 \times Vm \times \left[\frac{\left(P_{bar} + \left[\frac{DH}{13.6} \right] \right)}{(460 + Tm)} \right] \times Y$$

$$Vw(std) = 0.0471 \times Vlc$$

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)}\right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$M_S = Md \times (1 - Bws) + (18 \times Bws)$$

$$Vs = \sqrt{\frac{(Ts + 460)}{Ms \times Ps}} \times \sqrt{DP} \times Cp \times 85.49$$

$$Acfm = Vs \times Area (of stack or duct) \times 60$$

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

$$Dscfm = Scfm \times (1 - Bws)$$

Client: Behr Iron & Metal Facility: Rockford Facility

Project Number: M143903

Test Location: TPU Baghouse Inlet

Test Method: 5/12

Filterable Analysis Date:

Filter Drying Temp°F: Des. 24 Hours

Analyst: JMG

Description	Date	ID#	vol. (ml)	Initial Weight	Final Weight	Net Weight Gain
<u></u>				(grams)	(grams)	(grams)
		-	Filterable	Particulate		(314114)
Test No. 1	10/2/2014					
M5 Filter		7475		0.4727	0.7006	0.2279
Acetone Wash (Teflon		534	55 ml	1.3351	1.3680	0.0329
Acetone Blank						0.0001
Total Front Half Weight						0.2607
			Filterable	Particulate		
Test No. 2	10/2/2014					
M5 Filter		7479		0.4751	0.6629	0.1878
Acetone Wash (Teflon		536	30 ml	1.3461	1.3871	0.0410
Acetone Blank						0.0001
Total Front Half Weight					_	0.2287
			Filterable	Particulate		<u> </u>
Test No. 3	10/2/2014					
M5 Filter		7473		0.4736	0.7454	0.2718
Acetone Wash (Teflon		537	50 ml	1.3407	1.3694	0.0287
Acetone Blank						0.0001
Total Front Half Weight					<u> </u>	0.3004
			Reagent Bl	ank Summary		<u> </u>
Acetone Wash (Teflon		490	100 ml	1.3329	1.3331	0.0002

10/8/2014

Client:

Behr Iron & Metal

Facility:

Rockford Facility

Project Number:

M143903

Test Location:

TPU Baghouse Outlet

Test Method:

Filter Drying Temp °F: Des. 24 Hours

5/12

Analyst:

Filterable	Analysis	Date:
------------	-----------------	-------

10/8/2014

JMG

Description	Date	ID#	vol. (ml)	Initial Weight	Final Weight	(grams)	Net Weight Gain
				(grams)			(grams)
			Filterable Pa	articulate			
Test No. 1	10/2/2014						
M5 Filter		7474	-	0.4743	0.4835	5	0.0092
Acetone Wash (Teflon Baggies)		538	60 ml	1.3396	1.3453	3	0.0057
Acetone Blank							0.0001
Total Front Half Weight							0.0148
Total Total Total			Filterable P	articulate			
Test No. 2	10/2/2014						
M5 Filter		7478		0.4714	0.4741		0.0027
Acetone Wash (Teflon Baggies)		539	40 ml	1.3705	1.373	4	0.0029
Acetone Blank							0.0001
Total Front Half Weight							0.0055
			Filterable P	articulate			
Test No. 3	10/2/2014					_	
M5 Filter		7480	-	0.4719	0.488	0	0.0161
Acetone Wash (Teflon Baggies)		540	84 ml	1.3672	1.370	5	0.0033
Acetone Blank			, -				0.0002
Total Front Half Weight							0.0192
101011101111111111111111111111111111111		Re	eagent Blan	k Summary			
Acetone Wash (Teflon Baggies)			100 ml	1.3329	1.333	1	0.0002

		Chain-of-Cu	ustody	y Form	ו					
Project N	Number:M14	43903	Date I	Results I	Required:					
Client: Je	oseph Behr	& Sons, Inc.	TAT Required:							
Plant/Te System	st Location:	Rockford Facility/Rotary Furnace	Project Supervisor: STS							
Sample Number	Sample Date	Sample Point Identification		# of Conts	Sub Lab	Analysis Required	Volume, mls			
001	9/30/14	Baghouse Outlet Stack-Test 1- Filter a	and	2	ln- house	M5/12***				
002	9/30/14	Baghouse Outlet Stack-Test 2- Filter a Acetone PW	and	2,	In- house	M5/12***				
003	9/30/14	Baghouse Outlet Stack-Test 3- Filter a	and	2	in- house	M5/12***				
004	9/30/14	Feed Hopper Bypass-Test 1- Filter an Acetone PW	nd	2	In- house	M5/12***				
005	9/30/14	Feed Hopper Bypass-Test 2- Filter ar Acetone PW	nd	2	ln- house	M5/12***				
006	9/30/14	Feed Hopper Bypass-Test 3- Filter ar Acetone PW	nd	2	In- house	M5/12***				
007	9/30/14	Furnace Outlet-Test 1- Filter and Ace	tone	2	în- house	M5/12***				
800	9/30/14	Furnace Outlet-Test 2- Filter and Ace PW	tone	2	ln- house	M5/12***				
009	9/30/14	Furnace Outlet-Test 3- Filter and Ace PW	tone	2	in-	M5/12***				
010	9/30/14	Baghouse Inlet-Test 1- Filter and Ace	tone	2	In- house	M5/12***				
011	9/30/14	Baghouse Inlet-Test 2- Filter and Ace	etone	2	in- house	M5/12***				
012	9/30/14	Baghouse Inlet-Test 3- Filter and Acc	etone	2	In- house	M5/12***				
013	9/30/14	Acetone Reagent Blank		1	In- house	M5/12***				
014	9/30/14	Baghouse Outlet Stack-Test 1- Impin catch and 0.1NHNO ₃ PW	ger	2	MAX	M12	59,271			
015	9/30/14	Baghouse Outlet Stack-Test 2- Impin catch and 0.1NHNO₃ PW	ger	2	MAX	M12	79,282			

016	9/30/14	Baghouse Outlet Stack-Test 3- Impinger catch and 0.1NHNO ₃ PW	2	мах	M12	75,293
017	9/30/14	Feed Hopper Bypass-Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	71,328
018	9/30/14	Feed Hopper Bypass-Test 2- Impinger catch and 0.1NHNO ₃ PW	2	мах	M12	27,311
019	9/30/14	Feed Hopper Bypass-Test 3 Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	22,329
020	9/30/14	Furnace Outlet-Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	43,334
021	9/30/14	Furnace Outlet-Test 2- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	49,315
022	9/30/14	Furnace Outlet-Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	29,371
023	9/30/14	Baghouse Inlet-Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	31,273
024	9/30/14	Baghouse Inlet-Test 2- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	39,268
025	9/30/14	Baghouse Inlet-Test 3- Impinger catch and 0.1NHNO ₃ PW	2	мах	M12	51,289
026	9/30/14	0.1NHNO ₃ Reagent Blank	1	MAX	M12	225
027	10/1/14	Baghouse Outlet Stack-Test 1- Filter and Acetone PW	2	In- house	M5/12***	
028	10/1/14	Baghouse Outlet Stack-Test 2- Filter and Acetone PW	2	1n- house	M5/12***	
029	10/1/14	Baghouse Outlet Stack-Test 3- Filter and Acetone PW	2	ln- house	M5/12***	
030	10/1/14	Pot 3 Inlet Duct-Test 1- Filter and Acetone PW	2	In- house	M5/12***	
031	10/1/14	Pot 3 Inlet Duct -Test 2- Filter and Acetone PW	2	in- house	M5/12***	17,
032	10/1/14	Pot 3 Inlet Duct -Test 3- Filter and Acetone PW	2	In- house	M5/12***	
033	10/1/14	Pot 2 Inlet Duct -Test 1- Filter and Acetone PW	2	In- house	M5/12***	
034	10/1/14	Pot 2 Inlet Duct -Test 2- Filter and Acetone PW	2	in- house	M5/12***	

mostardi 🛑 platt

035	10/1/14	Pot 2 Inlet Duct -Test 3- Filter and Acetone PW	2	In- house	M5/12***	
036	10/1/14	Baghouse Outlet Stack-Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	26,287
037	10/1/14	Baghouse Outlet Stack-Test 2- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	30,284
038	10/1/14	Baghouse Outlet Stack-Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	31,297
039	10/1/14	Pot 3 Inlet Duct -Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	29,287
040	10/1/14	Pot 3 Inlet Duct -Test 2- Impinger catch and 0.1NHNO ₃ PW	2	мах	M12	39,289
041	10/1/14	Pot 3 Inlet Duct -Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	36,284
042	10/1/14	Pot 2 Inlet Duct -Test 1- Impinger catch and 0.1NHNO ₃ PW	2	мах	M12	54,285
043	10/1/14	Pot 2 Inlet Duct -Test 2- Impinger catch and 0.1NHNO₃ PW	2	мах	M12	34,286
044	10/1/14	Pot 2 Inlet Duct -Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	33,288
045	10/2/14	TPU Outlet Stack-Test 1- Filter and Acetone PW	2	ln- house	M5	
046	10/2/14	TPU Outlet Stack -Test 2- Filter and Acetone PW	2	In- house	M5	
047	10/2/14	TPU Outlet Stack -Test 3- Filter and Acetone PW	2	in- house	M5	
048	10/2/14	TPU Inlet Duct -Test 1- Filter and Acetone PW	2	In- house	M5	
049	10/2/14	TPU Inlet Duct -Test 2- Filter and Acetone PW	2	In- house	M5	
050	10/2/14	TPU Inlet Duct -Test 3- Filter and Acetone PW	2	in- house	M5	
051	10/2/14	TPU Outlet Stack -Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	35,659
052	10/2/14	TPU Outlet Stack -Test 2- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	39,817
053	10/2/14	TPU Outlet Stack -Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	33,864

054	10/2/14	TPU Inlet Duct -Test 1- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	21,913
055	10/2/14	TPU inlet Duct -Test 2- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	19,735
056	10/2/14	TPU Inlet Duct -Test 3- Impinger catch and 0.1NHNO ₃ PW	2	MAX	M12	26,972
Delivere	d to Lab by:	Date/Time: Received by: Date/Time	10/6/19		sed by: Date/Time:	10/8/19

Laboratory Notes: ***M5 analysis s being performed at Mostard Platt. I will send the samples for M12 analysis when M5 is finished.

Your P.O. #: MP2755 Your Project #: M142203

Site Location: JOSEPH BEHR & SONS

Attention:Data Reporting

Mostardi Platt 888 Industrial Rd Elmhurst, IL USA 60126-1121

Your C.O.C. #: 013, 026, 001/014, 002/015, 003/016, 004/017, 005/018, 006/019, 007/020, 008/021, 009/022, 010/023, 011/024, 012/025, 027/036, 028/037, 029/038, 030/039, 031/040, 032/041, 033/042, 034/043, 035/044, 045/051, 046/052, 047/053, 048/054, 049/055, 050/056, 057

Report Date: 2014/10/23

Report #: R3198147 Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

Quantity Extracted

MAXXAM JOB #: B4J0182 Received: 2014/10/09, 14:30

Sample Matrix: Stack Sampling Train

Samples Received: 31

Date Date

Laboratory Method Analyzed 2014/10/18 2014/10/20 BRL SOP-00103

Reference

EPA 12 m

Lead in Filter by ICPMS (M12mod) (1)

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) EPA Method 12 Modification - The analysis for the lead was completed using ICPMS instead of flame AA.

Encryption Key

Analyses

23 Oct 2014 18:24:12 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, Project Manager - Air Toxics, Source Evaluation

Email: CJohnson@maxxam.ca

Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

EPA M12 - LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)

Maxxam ID		XZ2744	XZ2745		XZ2746			
Sampling Date		2014/09/30	2014/09/30		2014/09/30			
COC Number		013	026		001/014			
	Units	M5/12-RB-ACETONE	M5/12-RB-HNO3	RDL	M5/12-BH OUT-09/30-T1	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	51.2	0.7	0.2	367	0.5	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2746	XZ2747	XZ2748			
Sampling Date		2014/09/30	2014/09/30	2014/09/30			L
COC Number		001/014	002/015	003/016			
	Units	M5/12-BH OUT-09/30-T1 Lab-Dup	M5/12-BH OUT-09/30-T2	M5/12-BH OUT-09/30-T3	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	370	287	1500	0.5	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		XZ2749	XZ2750		XZ2751			
Sampling Date		2014/09/30	2014/09/30		2014/09/30			
COC Number		004/017	005/018		006/019			<u>L</u>
	Units	M5/12-FEED H B-09/30-T1	M5/12-FEED H B-09/30-T2	RDL	M5/12-FEED H B-09/30-T3	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	3400	3050	0.5	8530	3	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2752	XZ2753	XZ2754			
Sampling Date		2014/09/30	2014/09/30	2014/09/30			
COC Number		007/020	008/021	009/022			
	Units	M5/12-FUR OUT-09/30-T1	M5/12-FUR OUT-09/30-T2	M5/12-FUR OUT-09/30-T3	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	981000	1760000	1540000	300	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

EPA M12 - LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)

Maxxam ID		XZ2755		XZ2756	XZ2757			
Sampling Date		2014/09/30	 	2014/09/30	2014/09/30			
COC Number		010/023		011/024	012/025			
	Units	M5/12-BH IN-09/30-T1	RDL	M5/12-BH IN-09/30-T2	M5/12-BH IN-09/30-T3	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	176000	50	525000	481000	300	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2758	XZ2759	XZ2760			lacksquare
Sampling Date		2014/10/01	2014/10/01	2014/10/01			
COC Number		027/036	028/037	029/038			
	Units	M5/12-BH OUT-10/01-T1	M5/12-BH OUT-10/01-T2	M5/12-BH OUT-10/01-T3	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	1260	1040	707	0.5	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2761		XZ2762	XZ2763			<u> </u>
Sampling Date		2014/10/01		2014/10/01	2014/10/01			<u> </u>
COC Number		030/039		031/040	032/041			
	Units	M5/12-POT 3 IN-10/01-T1	RDL	M5/12-POT 3 IN-10/01-T2	M5/12-POT 3 IN-10/01-T3	RDL	QC Batch	MDI
Inorganic Lead (Pb)	ug	2590	0.5	5660	5900	1	3790307	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2764	XZ2764		XZ2765			<u> </u>
Sampling Date		2014/10/01	2014/10/01		2014/10/01			
COC Number		033/042	033/042		034/043			
	Units	M5/12-POT 2 IN-10/01-T1	M5/12-POT 2 IN-10/01-T1 Lab-Dup	RDL	M5/12-POT 2 IN-10/01-T2	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	2830	2830	1	1000	0.5	3790310	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

EPA M12 - LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)

Maxxam ID		XZ2766		XZ2767			
Sampling Date		2014/10/01		2014/10/02			
COC Number		035/044		045/051			
_	Units	M5/12-POT 2 IN-10/01-T3	RDL	M5/12-TPU OUT-10/02-T1	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	691	0.5	1450	1	3790310	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2768	XZ2769		XZ2770			
Sampling Date		2014/10/02	2014/10/02		2014/10/02			
COC Number		046/052	047/053		048/054			
	Units	M5/12-TPU OUT-10/02-T2	M5/12-TPU OUT-10/02-T3	RDL	M5/12-TPU IN-10/02-T1	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	1990	2130	0.5	20600	5	3790310	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2771		XZ2772		XZ2780			<u> </u>
Sampling Date		2014/10/02		2014/10/02					
COC Number		049/055		050/056		057			
	Units	M5/12-TPU IN-10/02-T2	RDL	M5/12-TPU IN-10/02-T3	RDL	AUDIT-041614I-1429	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	19900	5	26800	10	81.7	0.5	3790310	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		XZ2782			
Sampling Date	N 1				
COC Number		057			
	Units	AUDIT-041614I-1430	RDL	QC Batch	MDL
Inorganic Lead (Pb)	ug	21.0	0.005	3790310	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

TEST SUMMARY

Maxxam ID: XZ2744

Sample ID: M5/12-RB-ACETONE

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha	

Maxxam ID: XZ2745

Sample ID: M5/12-RB-HNO3

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2746

M5/12-BH OUT-09/30-T1 Sample ID:

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha	

Maxxam ID: XZ2746 Dup

Sample ID: M5/12-BH OUT-09/30-T1

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2747

Sample ID: M5/12-BH OUT-09/30-T2

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha
cead in thick by fel (vis (vizzemes)					

Maxxam ID: XZ2748

Sample ID: M5/12-BH OUT-09/30-T3

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha
Lead III Titles by ICI IVIS (IVIII LINES)					

Maxxam ID: XZ2749

Sample ID: M5/12-FEED H B-09/30-T1

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790307	2014/10/18	2014/10/20	Nan Raykha

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

TEST SUMMARY

Batch

3790307

Maxxam ID: XZ2750

Collected: 2014/09/30

Sample ID:

M5/12-FEED H B-09/30-T2 Matrix: Stack Sampling Train

Shipped:

Received: 2014/10/09

Test Description Lead in Filter by ICPMS (M12mod)

Instrumentation ICP1

ICP1

ICP1

ICP1

Instrumentation

Extracted 2014/10/18 Date Analyzed 2014/10/20

Analyst Nan Raykha

Maxxam ID: XZ2751

Sample ID: M5/12-FEED H B-09/30-T3

Matrix: Stack Sampling Train

Collected: Shipped:

2014/09/30

2014/10/09 Received:

Test Description Lead in Filter by ICPMS (M12mod)

Instrumentation

Batch 3790307

Extracted **Date Analyzed** 2014/10/20 2014/10/18

Analyst Nan Raykha

Maxxam ID: XZ2752

M5/12-FUR OUT-09/30-T1 Sample ID:

Matrix: Stack Sampling Train

Collected: 2014/09/30

Shipped:

Received: 2014/10/09

Test Description Lead in Filter by ICPMS (M12mod)

Instrumentation

Batch 3790307

Batch

3790307

Batch

Batch

3790307

Date Analyzed Extracted 2014/10/20 2014/10/18

Analyst Nan Raykha

Maxxam ID:

Lead in Filter by ICPMS (M12mod)

XZ2753 Sample ID:

M5/12-FUR OUT-09/30-T2 Matrix: Stack Sampling Train

Collected: 2014/09/30 Shipped:

Analyst

2014/10/09 Received:

Test Description

Maxxam ID: XZ2754

Sample ID:

M5/12-FUR OUT-09/30-T3 Matrix: Stack Sampling Train

Collected:

Nan Raykha

2014/09/30

Shipped:

Received: 2014/10/09

Test Description Lead in Filter by ICPMS (M12mod)

Instrumentation ICP1

Batch Extracted 3790307 2014/10/18

Extracted

2014/10/18

Extracted

2014/10/18

Date Analyzed 2014/10/20

Date Analyzed

2014/10/20

Analyst Nan Raykha

Maxxam ID: XZ2755

M5/12-BH IN-09/30-T1 Sample ID: Matrix: Stack Sampling Train

Collected: Shipped: Received:

Analyst

Nan Raykha

2014/09/30

Test Description

Date Analyzed

2014/10/09

Lead in Filter by ICPMS (M12mod)

Maxxam ID:

Sample ID:

M5/12-BH IN-09/30-T2

Shipped:

Analyst

Nan Raykha

Collected: 2014/09/30

Matrix: Stack Sampling Train

Received: 2014/10/09

Test Description

Instrumentation

Extracted 2014/10/18

Lead in Filter by ICPMS (M12mod)

ICP1

Instrumentation

ICP1

3790307

Date Analyzed 2014/10/20

2014/10/20

Page 6 of 12

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

TEST SUMMARY

Maxxam ID: XZ2757 Collected: 2014/09/30

Shipped:

M5/12-BH IN-09/30-T3 Sample ID: Matrix: Stack Sampling Train

Received: 2014/10/09

Analyst Date Analyzed Instrumentation Batch **Extracted** Test Description Nan Raykha 2014/10/20 3790307 2014/10/18 Lead in Filter by ICPMS (M12mod) ICP1

Maxxam ID: XZ2758

Collected: 2014/10/01

Shipped:

Sample ID: M5/12-BH OUT-10/01-T1 Matrix: Stack Sampling Train

2014/10/09 Received:

Extracted **Date Analyzed** Analyst Instrumentation Batch **Test Description** 2014/10/20 Nan Raykha 2014/10/18 3790307 Lead in Filter by ICPMS (M12mod) ICP1

Maxxam ID: XZ2759

2014/10/01 Collected:

Shipped:

M5/12-BH OUT-10/01-T2 Sample ID: Matrix: Stack Sampling Train

2014/10/09 Received:

Date Analyzed Analyst Instrumentation Batch Extracted **Test Description** 2014/10/20 Nan Raykha 3790307 2014/10/18 ICP1 Lead in Filter by ICPMS (M12mod)

Maxxam ID: XZ2760 Collected: 2014/10/01

M5/12-BH OUT-10/01-T3 Sample ID: Matrix: Stack Sampling Train

Shipped: Received: 2014/10/09

Analyst Instrumentation Batch **Extracted** Date Analyzed **Test Description** Nan Raykha 3790307 2014/10/18 2014/10/20 ICP1 Lead in Filter by ICPMS (M12mod)

Maxxam ID: XZ2761

Collected: 2014/10/01

Shipped:

M5/12-POT 3 IN-10/01-T1 Sample ID: Matrix: Stack Sampling Train

2014/10/09 Received:

Date Analyzed Analyst Extracted Instrumentation Batch Test Description Nan Raykha 2014/10/18 2014/10/20 3790307 ICP1 Lead in Filter by ICPMS (M12mod)

Maxxam ID: XZ2762 M5/12-POT 3 IN-10/01-T2 Sample ID:

Matrix:

Collected: 2014/10/01

Shipped:

Received: 2014/10/09

Date Analyzed Analyst Extracted Batch Instrumentation **Test Description** 2014/10/20 Nan Raykha 2014/10/18 3790307 Lead in Filter by ICPMS (M12mod) ICP1

Maxxam ID: XZ2763

Matrix:

Collected: 2014/10/01

M5/12-POT 3 IN-10/01-T3 Sample ID: Stack Sampling Train

Stack Sampling Train

Shipped:

Received: 2014/10/09

Analyst Instrumentation Batch Extracted Date Analyzed **Test Description** 2014/10/20 Nan Raykha 3790307 2014/10/18 Lead in Filter by ICPMS (M12mod) ICP1

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

TEST SUMMARY

Maxxam ID: XZ2764

Sample ID: M5/12-POT 2 IN-10/01-T1

Matrix: Stack Sampling Train

Collected: 2014/10/01

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2764 Dup **Sample ID:** M5/12-POT 2 IN-10/01-T1

Matrix: Stack Sampling Train

Collected: 2014/10/01

Shipped:

Received: 2014/10/09

Maxxam ID: XZ2765

M5/12-POT 2 IN-10/01-T2 Sample ID:

Matrix: Stack Sampling Train

Collected: 2014/10/01

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2766

M5/12-POT 2 IN-10/01-T3 Sample ID:

Matrix: Stack Sampling Train

2014/10/01 Collected:

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha	

Maxxam ID: XZ2767

Sample ID: M5/12-TPU OUT-10/02-T1

Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2768

Sample ID: M5/12-TPU OUT-10/02-T2

Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha

Maxxam ID: XZ2769

Sample ID: M5/12-TPU OUT-10/02-T3

Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (M12mod)	ICP1	3790310	2014/10/18	2014/10/20	Nan Raykha	
cead in tiliter by ici inis (inizelliou)				-		

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

TEST SUMMARY

Maxxam ID: XZ2770

Sample ID: M5/12-TPU IN-10/02-T1
Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystLead in Filter by ICPMS (M12mod)ICP137903102014/10/182014/10/20Nan Raykha

Maxxam ID: XZ2771

Sample ID: M5/12-TPU IN-10/02-T2

Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Lead in Filter by ICPMS (M12mod)
 ICP1
 3790310
 2014/10/18
 2014/10/20
 Nan Raykha

Maxxam ID: XZ2772

Sample ID: M5/12-TPU IN-10/02-T3

Matrix: Stack Sampling Train

Collected: 2014/10/02

Shipped:

Received: 2014/10/09

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Lead in Filter by ICPMS (M12mod)
 ICP1
 3790310
 2014/10/18
 2014/10/20
 Nan Raykha

Maxxam ID: XZ2780

Sample ID: AUDIT-041614I-1429

Matrix: Stack Sampling Train

Collected:

Shipped:

Received: 2014/10/09

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Lead in Filter by ICPMS (M12mod)
 ICP1
 3790310
 2014/10/18
 2014/10/20
 Nan Raykha

Maxxam ID: XZ2782

Sample ID: AUDIT-041614I-1430

Matrix: Stack Sampling Train

Collected:

Shipped:

Received: 2014/10/09

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 Lead in Filter by ICPMS (M12mod)
 ICP1
 3790310
 2014/10/18
 2014/10/20
 Nan Raykha

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

GENERAL COMMENTS

Sample XZ2744-01: Reanalyzed the digest on 2014-10-21 to confirm data (Pb = 51.6 ug)

Sample XZ2782-01: Data for this sample is reported in ug/ml

EPA M12 - LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)

Lead in Filter by ICPMS (M12mod): Extra 2x, 5x 10x or 500x dilution was required for some samples due to the high levels.

Post digestion duplicate and spike was done on sample XZ2746.

Lead in Filter by ICPMS (M12mod): Extra 2x, 5x 10x or 20x dilution was required for some samples due to the high levels.

Post digestion duplicate and spike was done on sample XZ2764.

Results relate only to the items tested.

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3790307	N R	Matrix Spike(XZ2746)	Inorganic Lead (Pb)	2014/10/20		90	%	70 - 130
3790307	N R	Matrix Spike DUP(XZ2746)	Inorganic Lead (Pb)	2014/10/20		87	%	70 - 130
3790307	N R	MS/MSD RPD	Inorganic Lead (Pb)	2014/10/20	3.4		%	20
3790307	N R	Spiked Blank	Inorganic Lead (Pb)	2014/10/20		100	%	85 - 115
3790307	N R	Spiked Blank DUP	Inorganic Lead (Pb)	2014/10/20		102	%	85 - 115
3790307	N R	RPD	Inorganic Lead (Pb)	2014/10/20	2.5		%	20
3790307	N R	Method Blank	Inorganic Lead (Pb)	2014/10/20	<0.5		ug	
3790307	N R	RPD - Sample/Sample Dup	Inorganic Lead (Pb)	2014/10/20	0.65		%	20
3790310	NR	Matrix Spike(XZ2764)	Inorganic Lead (Pb)	2014/10/20		90	%	70 - 130
3790310	N R	Matrix Spike DUP(XZ2764)	Inorganic Lead (Pb)	2014/10/20		85	%	70 - 130
3790310	N R	MS/MSD RPD	Inorganic Lead (Pb)	2014/10/20	5.7		%	20
3790310	N R	Spiked Blank	Inorganic Lead (Pb)	2014/10/20		100	%	85 - 115
3790310	N R	Spiked Blank DUP	Inorganic Lead (Pb)	2014/10/20		99	%	85 - 115
3790310	N R	RPD	Inorganic Lead (Pb)	2014/10/20	0.054		%	20
3790310	N R	Method Blank	Inorganic Lead (Pb)	2014/10/20	0.7,		ug	
	-		-		RDL=0.5			
3790310	N R	RPD - Sample/Sample Dup	Inorganic Lead (Pb)	2014/10/20	0.14		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Mostardi Platt

Client Project #: M142203

Site Location: JOSEPH BEHR & SONS

Your P.O. #: MP2755

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ralph Siebert, Operations Manager - Inorganic Analyses

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		Cham-of-C	ustody	Form	1		
PKANK	Jungicen MA	4.1003	Osta Re	ousto i	4equired	263 5	
Chient J	owin first	Sāga iz	TAT Required				
Plant (e Syptiem	el Location	Received Feeling Politics Furnished	reject	Super	vaor STS		
Sample Names	Dare	Grago Pole Japonésia	100	et.	Set List	Seasons Required	Yeluma mis
M.	PK KATA	Bachouse Outet State Test 1- Piller Approve 199	p+0 2	i i	्रेड रेक्ट्रा	¥as2	
-002	0/50/14	Singlificate Outlet Shack Test 2-7 His Applicate PAY	906 3	ίλ. -	Jac S. Syr	MBHZH	
090	900/14	Bagnonee Ordet Back Test 3- Fillin Acetora PAV	und 1		in- Haube	Pr-18	
(\$5)44	1900.10	Faut Hopper Broads Test 1- Fitter w Acetone PW			(n) (n)	MOO!!!	
005	9/30/14	Fleed Hopping Bijposta Yest 3 - Fotor of Acertora PAU			jk Norm	Maria	
006	9/30/14	Feed Pages Sypans-Tear 3- Filter is Acetana PW	vd 2	1	H.	Metan	
007	9.391/14	Frances Output Fear 1- 7 fter and Ace PW	1,716		10034	M12**	
800	9/3/0/14	Foregoe Outlies-Teor 2: ("Aller and Acc PW	SO(M)		11-	46, C ***	
000	9-00-r4	Formace Collect Tent 3 False and Aca	inis [A.	9613**	
. 144	IV-50/14	Suprember Intel Test 1 Filler and Act	7-1-1		No	Militaria.	/*.*
Gtt.	95004	Balgrause lake Feet 2 Filler and Acc PW	PONA		11	M5/52***	
017	Section 14	Grand and heat Tool is make and Ass PW	250171	Ų.	fri Necdal	\$4012.	
013	5030/14	Acetone Reagent Blank		,	Sie COUPE	9MG/12***	
034	\$130/14	September Crack-Total 1-Imple calch ap 10 140740 PM	gger)		\$11.44	1,iii	59.371
015	9/30/14	Strouge Care State Feet 2 Impli care Land Cliffe NO PW	igær .	2	145,1	M12	1 - 282

13116	5720014	Bachbook Ordiet Stack Total 3- improper orgoniero C Martino (1994)	2	MAX	tatz	75 293
Q17	कारकुरीय	Fazz Hopper Bypast-Test 1- Impanger saich and 8 1MBNO, PW	2	394	M12	71,338
ā18.	GOVIII	Feed Hopper Bypass-Test 2- Knonger cach and 0 1MRNO, PW	ភ	MAX.	I/42	27,351
019	3630F24	Fees Hopper Syrase-Test 3 Impinger catch and 0 (NeWO, PV/	2	MAX	Li12	A2.379
020	5/30(14	Fundes Coses (est 1- injurger casch and printego), Par	3	MAX	4412	43,034
021	597.874	Furrace Cultet-fest 2-limpinger cition and 0 (19) feb. PW	2	SULX	16.1.	49 315
6352	N/30/14	Furnacie Copiet-Test 3- Impinger catch and 0 1969/00, PW	2	HAR	fA12	35.371
\$ 13	9/97/14	Eaglicuse Inici Test 1- Imprises calch and d INFINO, PW	2	NACE.	MID	31.373
(24	919W14	Hagberray ares Taus 2 - Vincinger Colon and g 119/1900; PVV	2	ABAR	ME	39,763
0.75	G/30/14	Baghoose intel/Tell 3- Intenger cash and C INHNO, PW	2	MAN	M12	51 189
515	4030074	û MihNO - Rasgerî Black	13	NHA	MIZ	225
027	10/1/14	Bagherse Canel State Test 1- From and Academ PW	2	ille Printe	93)7m	
625	TOPINA	Bagbacan Outlet Stack-Test 2- Filter and American PW		In House	MS/M-**	V 100 100
₂ Y.!!4	16/1/14	. Regiouse Outlet Stats: Text 3: Filter and Scelans PW	2	je proje	MSH2**	
535	18/1/14	For 3 med Guer Fast 1- Flear and Academic PW	2	in Negati	R851277	
53)	1891/14	Por 3 Inlet Druck Tees 1. Enter and Acesone PW	2	e . e y l M	186/13****	111
(17.5)	18/1/14	Post 3 India Duct (Text 9, First) and Accorde PW	12	lis.	MENDAN	
543	10/1/14	Par 2 Initial Chick Tarts 1: Piner and Assets/in-		No.	fac(1,2***	
534	1 (4) 1/14	Por J Inue: Duct -Tost 2- Filter and Academs		Tree Advances	N5-12	

mostardi 🏶 platt

035	100/14	Pox 3 intel Cluxs - Tells 3- Filter and Asolonic SNV	2//	lo- issuasi	MACE	
056	16/1/14	Eaglicuse Cutlet Black Test 1 Implinger coup and G. HiRRO PW	2	2/5% X	- M/2	25 287
637	ายากส	Baymaise Order Stock-Test 2- monger catch and 0 10:000 PW	2	Mos	R112	30,2%4
038	10/1/18	Bagnolise Outer Starn Test 3- Improper catch and 3 (NHRIO), PW	2	MAK	M12	31,397
039	10/1/14	Pol I inter Duct -Test 1 - Imperigor catch and it 100 600, PW	ž	MAK	M12	29,287
040	101113	Pot 3 fram Coot (Table 2) for person colors and 0 (HARSO, PW)	1	MAX	Mig	39.2%8
हुब ६	19/1/14	Pat 3 Inter Out - Test 3- Impleger coops and 0 199900 PW	2	NAM	MC	36.284
042	19744	Pol 2 Inset Suct - Fest 1- Implings/ catch and 5 19980, IPS/	1	1603	M12	54,285
043	10/3/14	Por 2 have Stock -Tear 2- knoproper celebra and 0 (NINNO 194)	2	LIAN	Mil	54 228
Q4.0	194114	Pot 1 free Duct -Test 3- hopings catch and 0. MRNO-PW	2	MAK	M12	35.286
049	10/G/14	TPU Cuties Stock-Test 3 - Filter and Amelione PW	g.	to touse	W243***	
046	10/2/14	TPU: Coner Stack -Test 2- Filter and Acetona PMs	2.	film house	\$45012***	
047	10/0/14	GPU Ognes Scape - Face 3 - Filter and Acquires PW		16.004	M&(02***	
040	10/2/14	17U feet Duct-Test 1-F2st and Acatons PM		for nethran	M6/12***	
, 949	10/2/64	TPU plus Decr. Test 2-7 the and Austria PAI	2	in-	M5/12***	
(A)	100/14	Table Intel Suict - Test 3 Filter and Academic PW	-)m ngasa	Mgagas	
151	104/14	TPU Owner Stack (Test 1) arranged seach and 0 ThreNO PW	7	MAX	M12	30,550
992	(Granta	OF U Guidat Sexis - Line 2- Improje auto- and 0 IMPNO FW	1	MAK	N12	39 817
090	160014	The Codes Souch Total & Improper carchitects (MRMC) Par	12	Mex	M12	33.664

054	100714	TPU Inlet Dues -Test is lenginger saidh and g 1999 (G. PW	2	MAX	3412	21,913
055	15/2014	TPU Intend At Test 2: Hepinger discreting 6 (NHIRO) PW	2	MAX	8112	19709
565	100004	TPU bile Dec Ave 3- impligat saids and o 1990/0, PW	2	MAX	Mil	25972
367		Audi: Sample		1		
Kingdomeric	de tech	Constitue december by position on the Educari	20/4/K	Proces del 1	ed by Oa	G Time

Laboratory Notes: "M5 analysis is being performed at Mostardi Piatt. I will send the samples for M12 analysis when M5 is finished

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Inlet

Test Method: 5/12

		Run 1	Run 2	Run 3
Identify Analyte:	Lead (Pb)			
Molecular Weight:	207.19	ADL	ADL	ADL
ug (net) collected:		20548.1	19848.1	26748.1

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Outlet

Test Method: 5/12

		Run 1	Run 2	Run 3
Identify Analyte:	Lead (Pb)			
Molecular Weight:	207.19	ADL	ADL.	ADL
ug (net) collected:		1398.1	1938.1	2078.1

Appendix F = Reference Method Test Data (Computerized Sheets)

Client: Facility: Test Location: Project #: Test Method: Test Engineer: Test Technician:	<u>R1</u>	Behr Iron & Metal Rockford Facility TPU Baghouse Inlet M143903 5/12 JHOWE BPT R2	<u>R3</u>	
Temp ID:	CM30	I CM30	CM30	Į.
Meter ID:	CM30	CM30	CM30	İ
Pitot ID:	123	123	123	
Nozzle Diameter:	0.398	0.398	0.398	in.
Meter Calibration Factor (Y):	1.009	1.009	1.009	
Meter Orifice Setting (Delta H):	1.737	1.737	1.737	
Pitot Tube Coefficient:		0.840		
Probe Length:		3.0		ft
Probe Liner Material:		Glass		
Nozzle Kit ID Number and Material:		Teflon 7		
Port Length:		6.00	•	in.
Port Size (diameter):		6.00		in.
Port Type:		Nipple		
Duct Shape:		Circular		
Diameter		1.75		ft
Duct Area:		2.405		Sq. Ft.
Upstream Diameters:		>.5		
Downstream Diameters:		>2		
Number of Ports Sampled:		2		
Number of Points per Port:		12		
Minutes per Point:		5.0 5.0		
Minutes per Reading:		5.0 24		
Total Number of Traverse Points:		120		min.
Test Length:		Hot Box		
Train Type: Source Condition:	·	Normal		
Servomex Serial Number:		01440D1/4385		
Moisture Balance ID:		S10-39		
# of Runs		3		
# Of Rulls		ŭ		

Run 1-Method 5/12

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Inlet

Source Condition: Normal

Date: Start Time: 10/2/14 9:20

End Time:

11:25

|--|

DRY GAS METER C	DRY GAS METER CONDITIONS			3 IACK CONDITIONS		
ΔΗ:	1.37	in. H ₂ O	Static Pressure	-0.60	in. H ₂ O	
Meter Temperature, Tm:	78.1	•F	Flue Pressure (Ps):	28.96	in, Hg. abs.	
Sgrt ΔP:	0.347	in. H ₂ O	Carbon Dioxide:	3.80	%	
Stack Temperature, Ts:	398.9	°F	Oxygen:	15.40	%	
Meter Volume, Vm:	79.609	ft ³	Nitrogen:	80.80	%	
Meter Volume, Vmstd:	76.665	dscf	Gas Weight dry, Md:	29.224	lb/lb mole	
Meter Volume, Vwstd:	29.923	wscf	Gas Weight wet, Ms:	26.073	lb/lb mole	
Isokinetic Variance:	108.4	%	Excess Air:		%	
	0.00		Gas Velocity, Vs:	26.586	fps	
Test Length	120.00	in mins.	Volumetric Flow:	3,837	acfm	
Nozzle Diameter	0.398	in inches	Volumetric Flow:	1,642	dscfm	
Barometric Pressure	29.00	in Hg	Volumetric Flow:	2,283	scfm	
		ICOLOTUDE DEYEDBUILLATION				

MOISTURE DETERMINATION

Initial Impinger Content: 2016.5 Final Impinger Content: 2621.8

Difference:

ml 605.3

Silica Initial Wt. Silica Final Wt. 856.6 886.6 grams grams

Difference:

30.0

Total Water Gain: 635.3

Moisture, Bws:

0.281

		1	
Meter '	Tem	p	

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔН	Meter Vol.	Temp	inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in, H2O	in. H2O	ft ³	°F	*F	°F	∆р	ft³	ft/sec
1-1	9:20:00	0.19	2,00	65.863	419	72	70	0.436	4.072	33.387
1-2	9:25:00	0.16	1,70	69.935	418	73	71	0.400	3.775	30.638
1-3	9:30:00	0.08	0.84	73.710	446	74	71	0.283	2.625	21.665
1-4	9;35:00	0.06	0.63	76.335	424	75	72	0.245	2.165	18.762
1-5	9:40:00	0.05	0.55	78,500	410	77	73	0.224	2.215	17.127
1-6	9:45:00	0.05	0.56	80.715	388	76	73	0.224	1,694	17.127
1-7	9:50:00	0.09	1.00	82.409	418	76	73	0.300	3.221	22.979
1-8	9:55:00	0.07	0.78	85.630	320	77	73	0.265	2,590	20.265
1-9	10:00:00	0.06	0.67	88.220	381	77	73	0.245	2.395	18.762
1-10	10:05:00	0.12	1.30	90.615	450	78	73	0.346	3.205	26.534
1-11	10:10:00	0.17	1.90	93.820	365	78	74	0.412	3.915	31.581
1-12	10:15:00	0,20	2.20	97.735	369	79	74	0.447	4,360	34.255
	10:20:00			102.095						
2-1	10:25:00	0,21	2.30	102.095	461	83	79	0.458	4,295	35.101
2-2	10:30:00	0.18	2.00	106.390	456	82	78	0.424	3.995	32.497
2-3	10:35:00	0.16	1,80	110.385	402	84	80	0,400	3.920	30.638
2-4	10:40:00	0.16	1.80	114.305	403	83	80	0.400	3.715	30.638
2-5	10:45:00	0.13	1.40	118,020	454	84	82	0.361	3.460	27.617
2-6	10:50:00	0.13	1.40	121,480	426	83	81	0.361	3.355	27.617
2-7	10:55:00	0.11	1.20	124,835	435	85	81	0.332	3.275	25.404
2-8	11:00:00	0.11	1.20	128.110	429	83	81	0.332	3.295	25.404
2-9	11:05:00	0.10	1.10	131,405	390	83	81	0.316	3.095	24.222
2-10	11:10:00	0.12	1.30	134.500	305	83	81	0.346	3.340	26.534
2-11	11:15:00	0.16	1,80	137.840	310	83	81	0.400	3.905	30.638
2-12	11:20:00	0.14	1.50	141.745	295	83	81	0.374	3.727	28.660
	11:25:00		<u> </u>	145.472	ļ					
	11.20,00			1	1					
			 	1	T			T		

79.6 76.5 79.609 Total 0.347 78.1 398.9 1.37 Average 0.224 0.55 295.0 70.0 Min 0.458 461.0 85.0 2.30 Max

79.609

Run 2-Method 5/12

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Inlet

Source Condition: Normal

Date: 10/2/14 Start Time: 11:55 **End Time:** 13:58

DRY GAS METER C	DRY GAS METER CONDITIONS			STACK CONDITIONS		
ΔΗ:	1.76	In H ₂ O	Static Pressure	-0.60	in. H ₂ O	
Meter Temperature, Tm:	83.1	°F	Flue Pressure (Ps):	28.96	in. Hg. abs.	
Sqrt ∆P:	0.384	In. H₂O	Carbon Dioxide:	4.30	%	
Stack Temperature, Ts.	416.3	°F	Oxygen:	14.70	%	
Meter Volume, Vm:	89.009	ft ³	Nitrogen:	81.0	%	
Meter Volume, Vmstd:	85.005	dscf	Gas Weight dry, Md:	29.276	lb/lb mole	
Meter Volume, Vwstd:	20.489	wscf	Gas Weight wet, Ms:	27.086	lb/lb mole	
Isokinetic Variance:	99.8	%1	Excess Air:	0000	%	
			Gas Velocity, Vs:	29.157	fps	
Test Length	120.00	in mins.	Volumetric Flow:	4,208	acfm	
Nozzle Diameter	0.398	in inches	Volumetric Flow:	1,977	dscfm	
Barometric Pressure	29.00	in Hg	Volumetric Flow:	2,454	scfm	
		MOISTHDE DETERMINATION				

MOISTURE DETERMINATION

Initial Impinger Content: ml 2004.3 2419.6 Final Impinger Content: ml

Difference:

Velocity

Head ∆p

in. H2O

0.14

0.16

0.14

0.16

0.13

0.16

0.31

0.11

415.3

Orifice

 ΔH

in. H2O

1,50

1.80

1.50

1.80

1.40

1.80

3.40

1.20

Silica Initial Wt. Silica Final Wt. 809,2 828.9 19.7

grams grams

Total Water Gain: 435.0

0.1	94

82

0.332

Difference:

	M	oisture, Bws:	0.194			
Actual	Stack	Meter	Temp		Collected	Point
Meter Vol. ft ³	Temp °F	Inlet °F	Outlet *F	Sqrt. ∆p	Vol. ft ³	Vel ft/sec
48.639	454	83	82	0.374	3.666	28.401
52.305	445	83	81	0.400	3.810	30.362
56.115	430	86	84	0.374	3.600	28.401
59.715	420	85	84	0.400	3.875	30.362
63.590	447	86	84	0.361	3.505	27.368
67.095	456	86	84	0.400	3.810	30.362
70.905	463	86	84	0.557	5.140	42.262
76.045	422	86	84	0.529	5.175	40.165
81.220	401	86	84	0.529	5.055	40,165
96 275	410	86	85	0.469	4.530	35 602

1-8	12:30:00	0.28	3,10	76.045	422	86	84	0.529	5.175	40.165
1-9	12:35:00	0.28	3.10	81,220	401	86	84	0.529	5.055	40.165
1-10	12:40:00	0.22	2.40	86.275	419	86	85	0.469	4.530	35.602
1-11	12:45:00	0.11	1.20	90.805	422	86	85	0.332	3.280	25.175
1-12	12:50:00	0.04	0.44	94.085	335	87	85	0.200	2,188	15.181
	12:55:00			96.273						
2-1	12:58:00	0.04	0.44	96.273	356	80	80	0.200	1,902	15.181
2-2	13:03:00	0.06	0.66	98.175	495	80	80	0.245	2.375	18.593
2-3	13:08:00	0.10	1.10	100.550	447	80	80	0.316	3.180	24.003
2-4	13:13:00	0.10	1.10	103.730	386	81	80	0.316	3.095	24.003
2-5	13;18:00	0.06	0.66	106.825	369	80	80	0.245	2.285	18.593
2-6	13:23:00	0.06	0.66	109.110	402	82	81	0.245	2.280	18.593
2-7	13:28:00	0.26	2.90	111.390	471	83	81	0.510	4.905	38.704
2-8	13:33:00	0.32	3.50	116.295	432	84	81	0.566	5.400	42.938
2-9	13:38:00	0.26	2.90	121.695	414	84	81	0.510	5.095	38.704
2-10	13:43:00	0.19	2.10	126.790	402	84	81	0.436	4.270	33.086
2-11	13:48:00	0.14	1.60	131,060	378	85	82	0.374	3.635	28.401

324

85

89.009 83.9 82.3 89.009 Total 83.1 0.384 416.3 1.76 Average 0.200 0.44 324.0 80.0 Min 0.566 3.50 495.0 87.0 Max

134.695

137.648

2-12

Port-

Point No.

1-1

1-2

1-3

1-4

1-5

1-6

1-7

Clock

Time 11:55:00

12:00:00

12:05:00

12:10:00

12:15:00

12:20:00

12:25:00

13:53:00

13:58:00

25.175

2.953

Run 3-Method 5/12

Client: Behr Iron & Metal Date: 10/2/14
Facility: Rockford Facility Start Time: 14:20
Test Location: TPU Baghouse Inlet End Time: 16:24

Source Condition: Normal

DRY GAS METER C	ONDITIONS		STACK CONDITIONS	3	
ΔН:	1.90	In. H ₂ O	Static Pressure	-0.60	in. H ₂ O
Meter Temperature, Tm:	79.9	°F	Flue Pressure (Ps):	28.96	in. Hg. abs.
Sqrt ∆P:	0.406	In. H₂O	Carbon Dioxide:	3.60	%
Stack Temperature, Ts:	427.9	°F	Oxygen:	14.40	%
Meter Volume, Vm:	93.109	ft ³	Nitrogen:	82	%
Meter Volume, Vmstd:	89.480	dscf	Gas Weight dry, Md:	29.152	lb/lb mole
Meter Volume, Vwstd:	33.168	wscf	Gas Weight wet, Ms:	26.136	lb/lb mole
Isokinetic Variance:	108.6	%l	Excess Air:		%
			Gas Velocity, Vs:	31.567	fps
Test Length	120.00	in mins.	Volumetric Flow:	4,556	acfm
Nozzle Diameter	0.398	in inches	Volumetric Flow:	1,913	dscfm
Barometric Pressure	29.00	in Hg	Volumetric Flow:	2,622	scfm
		MOISTURE DETERMINATION	. \ X		

Initial Impinger Content: 2018.4 ml Silica Initial Wt. 850.4 grams
Final Impinger Content: 2685.9 ml Silica Final Wt. 887.1 grams

Difference: 667.5 Difference: 36.7

Total Water Gain: 704.2 Moisture, Bws: 0.270

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔH	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	°F	"F	°F	Δр	ft³	ft/sec
1-1	14:20:00	0,12	1,30	38.686	493	79	79	0.346	3,404	26.945
1-2	14:25:00	0.22	2,40	42.090	473	82	80	0.469	4.315	36.484
1-3	14:30:00	0.19	2.10	46.405	401	82	80	0.436	4.035	33.905
1-4	14:35:00	0.14	1.50	50.440	391	82	80	0.374	3.630	29.104
1-5	14:40:00	0.17	1.90	54.070	449	82	80	0.412	4.050	32.071
1-6	14:45:00	0.19	2.10	58.120	480	83	81	0,436	4.110	33,905
1-7	14:50:00	0.14	1.50	62.230	417	83	82	0.374	3.610	29,104
1-8	14:55:00	0.18	2.00	65.840	433	84	8	0.424	4.205	33.001
1-9	15:00:00	0.17	1.90	70.045	427	84	81	0.412	3.785	32.071
1-10	15:05:00	0.15	1.60	73.830	389	85	82	0.387	3.835	30.126
1-11	15:10:00	0.04	0,43	77.665	371	85	82	0.200	2.240	15,557
1-12	15:15:00	0.04	0,43	79.905	360	86	82	0.200	1.588	15,557
	15:20:00			81.493						
2-1	15:24:00	0,34	3.70	81.493	493	83	81	0.583	5.517	45.356
2-2	15:29:00	0,31	3.40	87.010	456	83	81	0.557	5.265	43.308
2-3	15:34:00	0.31	3.40	92.275	407	82	81	0,557	5.320	43.308
2-4	15:39:00	0.27	3.00	97.595	424	82	81	0.520	5.035	40.418
2-5	15:44:00	0.17	1.90	102.630	401	82	81	0.412	3.885	32.071
2-6	15:49:00	0.14	1.50	106.515	379	81	81	0.374	3.700	29.104
2-7	15:54:00	0.22	2.40	110.215	431	81	80	0.469	4.250	36.484
2-8	15:59:00	0.16	1.80	114,465	457	81	80	0.400	4.140	31,114
2-9	16:04:00	0.14	1.50	118.605	429	81	_80	0.374	3.430	29.104
2-10	16:09:00	0.14	1.50	122.035	478	81	80	0.374	3,450	29.104
2-11	16:14:00	0.11	1.20	125.485	434	80	79	0.332	3,305	25.798
2-12	16:19:00	0.10	1.10	128.790	397	80	79	0.316	3.005	24.598
	16:24:00			131.795						
	*				-					

93.109 82.3 77.5 93.109 Total 1.90 427.9 79.9 0.406 Average 0.200 360.0 8.0 Min 0.43 3.70 493.0 86.0 0.583 Max

Client: Facility: Test Location: Project #: Test Method: Test Engineer: Test Technician:				
	<u>R1</u>	<u>R2</u>	<u>R3</u>	
Temp ID:	CM18	CM18	CM18	
Meter ID:	CM18	CM18 170A	CM18 170A	
Pitot ID: Nozzle Diameter:	170A 0.301	0.301	0.301	in.
Meter Calibration Factor (Y):	1.004	1.004	1.004	III.
Meter Campration Factor (1). Meter Orifice Setting (Delta H):	1.616	1.616	1.616	
Pitot Tube Coefficient:	1.010	0.840	1.010	1
Probe Length:		4.0		ft
Probe Liner Material:		Teflon		
Nozzle Kit ID Number and Material:		7		
Sample Plane:		Horizontal		
Port Length:		6.00		in.
Port Size (diameter):		6.00		in.
Port Type:		Nipple		
Duct Shape:		Circular		
Diameter		1.5		ft
Duct Area:		1.767		Sq. Ft.
Upstream Diameters:		>.5		
Downstream Diameters:		>2		
Number of Ports Sampled:		2		
Number of Points per Port:		12		
Minutes per Point:		5.0		
Minutes per Reading:		5.0		
Total Number of Traverse Points:		24		min.
Test Length:		120		min.
Train Type:		Anderson Box Normal		
Source Condition:		01440D1/4385		
Servomex Serial Number:		s10-39		
Moisture Balance ID: # of Runs		3		
# OI Runs		3		

Run 1-Method 5/12

Client: Behr Iron & Metal Facility: Rockford Facility **Test Location: TPU Baghouse Outlet**

Source Condition: Normal

Date: 10/2/14 Start Time: 9:20

End Time:

11:27

DRY GAS METER C	ONDITIONS	<u></u>	STACK CONDITIONS				
ΔH:	1,32	in. H ₂ O	Static Pressure	0.50	in. H ₂ O		
Meter Temperature, Tm:	77.9	°F	Flue Pressure (Ps):	29.33	in. Hg. abs.		
Sgrt ∆P:	0.556	in. H₂O	Carbon Dioxide:	2.10	%		
Stack Temperature, Ts:	281.6	°F	Oxygen:	17.90	%		
Meter Volume, Vm:	79.184	ft ³	Nitrogen:	80.00	%		
Meter Volume, Vmstd:	76.650	dscf	Gas Weight dry, Md:	29.052	lb/lb mole		
Meter Volume, Vwstd:	18,774	wscf	Gas Weight wet, Ms:	26.878	lb/lb mole		
Isokinetic Variance:	99.4	%l	Excess Air:		%		
			Gas Velocity, Vs:	38.701	fps		
Test Length	120.00	in mins.	Volumetric Flow:	4,103	acfm		
Nozzle Diameter	0.301	in inches	Volumetric Flow:	2,300	dscfm		
Barometric Pressure	29.29	in Hg	Volumetric Flow:	2,864	scfm		
		MOISTURE DETERMINATION	. \ X				

Initial Impinger Content:

2005.4 2379.9

ml

Silica Initial Wt. Silica Final Wt. 836.0 860.1

grams

Final Impinger Content: Difference:

0.57

10:15:00

10:20:00

10:27:00

1-12

374.5

2.30

Difference:

24.1

0.755

4.476

52.589

grams

Total Mater Cain: 200 6

79

Moisture, Bws: 0.197

	Tota	il Water Gain:	398.6		IVI	OISLUTE, DWS.	0.197			
		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock Time	Head ∆p in. H2O	ΔH in. H2O _	Meter Vol. ft ³	Temp °F	inlet °F	Outlet °F	Sqrt. ∆p	Vol. ft³	Vel ft/sec
1-1	9:20:00	0.35	1.40	92.690	290	71	70	0.592	2.791	41.209
1-2	9:25:00	0.22	0.90	95.481	266	72	70	0.469	3.267	32.672
1-3	9:30:00	0.15	0.61	98.748	260	72	70	0.387	2.593	26.978
1-4	9:35:00	0.17	0.71	101.341	253	73	71	0.412	2.503	28.720
1-5	9:40:00	0,18	0.75	103.844	250	74	72	0.424	2.584	29.553
1-6	9:45:00	0.16	0.68	106.428	246	75	72	0.400	2.454	27.862
1-7	9:50:00	0.15	0.64	108.882	236	76	74	0.387	2.391	26.978
1-8	9:55:00	0.13	0.56	111.273	233	76	73	0.361	2,242	25.115
1-9	10:00:00	0.14	0.60	113.515	241	77	74	0.374	2.307	26.063
1-10	10:05:00	0.28	1.16	115.822	263	78	75	0.529	3.358	36.859
1-11	10:10:00	0.35	1.41	119.180	285	80	76	0.592	3.491	41.209
1-12	10:15:00	0.35	1.41	122,671	289	81	77	0.592	3.464	41.209
1-12	10.10.00	0.00	1.71							

79 0.755 4.207 52.589 130.611 82 2.30 303 10:32:00 0.57 2-2 80 0.748 4.165 52.126 134.818 319 82 10:37:00 0.56 2.30 2-3 0.663 3.932 46.205 82 80 10:42:00 0.44 138.983 306 2-4 4.013 46.727 0.671 83 80 10:47:00 0.45 1.80 142.915 308 2-5 46.727 0.671 3.956 81 1.80 146.928 83 10:52:00 0.45 2-6 0.663 3.948 46.20<u>5</u> 81 10:57:00 0.44 1.80 150.884 83 2-7 3.491 41.209 0.592 81 154.832 83 11:02:00 0.35 1.40 2-8 3.389 41.209 0.592 158.323 303 81 2-9 11:07:00 0.35 1.40 161.712 3.463 40.014 83 81 0.574 1.30 300 2-10 11:12:00 0.33 82 0.566 3.337 39.403 165.175 296 83 1.30 2-11 11:17:00 0.32 168.512 294 84 82 0.566 3.362 39.403 2-12 11:22:00 0.32 1.30 171.874 11:27:00

297

81

76.7 79.184 79.0 Total 0.556 1.32 281.6 77.9 Average 70.0 0.361 233.0 0.56 Min 319.0 84.0 0.755 2.30 Max

126.135

126.135

79.184

Run 2-Method 5/12

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Outlet

Source Condition: Normal

10/2/14 Date: Start Time: 11:55

End Time: 1:58

DRY GAS METER C	ONDITIONS		STACK CONDITIONS		
<u>ΔH:</u>	1.30	In. H₂O	Static Pressure	0.50	in. H ₂ O
Meter Temperature, Tm:	83.2	°F	Flue Pressure (Ps):	29.33	in, Hg. abs.
Sart ΔP :	0.557	In. H₂O	Carbon Dioxide:	2.40	%
Stack Temperature, Ts:	284.7	°F	Oxygen:	16.50	%
Meter Volume, Vm:	79.571	ft ³	Nitrogen:	81.1	%
Meter Volume, Vmstd:	76.267	dscf	Gas Weight dry, Md:	29.044	lb/ib mole
Meter Volume, Vwstd:	27.243	wscf	Gas Weight wet, Ms:	26.137	lb/lb mole
Isokinetic Variance:	106.2	%I	Excess Air:		%
ISOMI SIS TOMATICAL			Gas Velocity, Vs:	39.441	fps
Test Length	120.00	in mins.	Volumetric Flow:	4,182	acfm
Nozzle Diameter	0.301	in inches	Volumetric Flow:	2,141	dscfm
Barometric Pressure	29.29	in Hg	Volumetric Flow:	2,906	scfm
Balomon 1 1 doos 4		MOISTURE DETERMINATION			

MOISTURE DETERMINATION

1896.0 Initial Impinger Content: Final Impinger Content: 2440.6 ml Difference: 544.6

578.4

Silica Initial Wt. Silica Final Wt.

841.2 grams 875.0 grams

Difference: 33.8

Total Water Gain:

Moisture, Bws:

0.263

		Velocity	Orifice	Actual	Stack	Meter T	emp		Collected	Point
Port-	Clock	Head ∆p	ΔН	Meter Vol.	Temp	inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	<u>°F</u>	°F	°F	<u>∆p</u>	ft ³	ft/sec
1-1	11:55:00	0.35	1,41	79.645	284	84	83	0.592	3.642	41.874
1-2	12:00:00	0.35	1,41	83.287	281	85	83	0.592	3.536	41.874
1-3	12:05:00	0.34	1.37	86.823	284	86	83	0.583	3.421	41.272
1-4	12:10:00	0.34	1.37	90.244	294	86	83	0.583	3.543	41.272
1-5	12:15:00	0.34	1.37	93.787	296	86	84	0.583	3.331	41.272
1-6	12:20:00	0.33	1.33	97.118	300_	86	84	0.574	3.470	40.660
1-7	12:25:00	0.61	2.45	100.588	329	87	84	0.781	4.537	55.281
1-8	12:30:00	0.61	2.45	105.125	333	86	84	0.781	4.608	55.281
1-9	12:35:00	0.60	2.41	109.733	337	86	84	0.775	4.588	54.826
1-10	12:40:00	0.45	1.81	114.321	330	86	84	0.671	3.824	47.481
1-11	12:45:00	0.25	1.00	118.145	299	85	83	0.500	3.143	35,390
1-12	12:50:00	0.18	0.72	121.288	295	85	83	0.424	2.760	30.030
1-12	12:55:00			124.048						
2-1	12:58:00	0.15	0.60	124.048	270	82	82	0.387	2.433	27.413
2-2	1:03:00	0.15	0.60	126.481	270	83	82	0.387	2.263	27.413
2-3	1:08:00	0.28	1.10	128.744	290	82	81	0.529	3.147	37.453
2-4	1:13:00	0.25	1.00	131.891	277	82	81	0.500	2.882	35.390
2-5	1:18:00	0.25	1.00	134.773	264	82	81	0.500	2.955	35.390
2-6	1:23:00	0.22	0.88	137.728	257	82	81	0.469	2.794	33.199
2-7	1:28:00	0.35	1.40	140.522	287	83	81	0.592	3.393	41.874
2-8	1:33:00	0.42	1.70	143.915	286	83	81	0.648	3,918_	45.871
2-9	1:38:00	0.18	0.72	147.833	242	83	81	0.424	2.588	30.030
2-10	1:43:00	0.22	0.88	150.421	238	83	81	0.469	2.804	33.199
2-10	1:48:00	0.28	1,10	153.225	236	83	81	0.529	3.093	37.453
2-11	1:53:00	0.25	1.00	156.318	253	82	80	0.500	2.898	35.390
<u> </u>	1:58:00	V.E.		159.216						
	1.30:00			, 50 12 10						
Total				79.571	l	84.1	82.3		79.571	

0.557 284.7 83.2 1.30 Average 236.0 80.0 0.387 0.60 Min 0.781 2.45 337.0 87.0 Max

Run 3-Method 5/12

Client: Behr Iron & Metal Facility: Rockford Facility Test Location: TPU Baghouse Outlet

Date: Start Time: 10/2/14 2:20

End Time:

4:23

Source Condition: Normal

STACK CONDITIONS DRY GAS METER CONDITIONS

ΔΗ:	2.40	In. H₂O	Static Pressure	0.50	in. H ₂ O
Meter Temperature, Tm:	81.7	°F	Flue Pressure (Ps):	29.33	in. Hg. abs.
Sqrt ∆P:	0.761	In. H₂O	Carbon Dioxide:	2.90	%
Stack Temperature, Ts:	345.8	°F	Oxygen:	16.00	%
Meter Volume, Vm:	107.529	ft ³	Nitrogen:	81.1	%
Meter Volume, Vmstd:	103.628	dscf	Gas Weight dry, Md:	29.104	lb/lb mole
Meter Volume, Vwstd:	28.896	wscf	Gas Weight wet, Ms:	26.683	lb/lb mole
Isokinetic Variance:	104.7	%I	Excess Air:	100	%
			Gas Velocity, Vs:	55.428	fps
Test Length	120.00	in mins.	Volumetric Flow:	5,877	acfm
Nozzle Diameter	0.301	in inches	Volumetric Flow:	2,952	dscfm
Barometric Pressure	29.29	in Hg	Volumetric Flow:	3,775	scfm
		MOISTING DETERMINATION			

MOISTURE DETERMINATION Silica Initial Wt.

843.6

grams

Initial Impinger Content: 2004.8 ml Final Impinger Content: 2587.1 ml

Silica Final Wt.

874.8 grams

Difference: 582.3

Difference:

31.Ž

Total Water Cain:

6135

Moisture, Bws: 0.218

	Tot	al Water Gain:	613.5		N	Moisture, Bws:	0.218			
		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port- Point No.	Clock	Head ∆p in. H2O	∆H in. H2O	Meter Vol. ft ³	Temp °F	Inlet °F	Outlet "F	Sqrt. ∆p	Vol. ft³	Vel ft/sec
1-1	2:20:00	0.29	1.20	60.394	281	80	80	0.539	3.281	39.243
1-2	2:25:00	0.45	1.80	63.675	289	80	79	0.671	3.989	48.884
1-3	2:30:00	0.49	1.90	67.664	290	81	80	0.700	4.158	51.010
1-4	2:35:00	0.45	1.80	71.822	289	82	80	0.671	3.856	48.884
1-5	2:40:00	0.35	1.40	75.678	301	83	80	0.592	3.633	43.111
1-6	2:45:00	0.70	2.80	79.311	324	83	80	0.837	4.901	60.969
1-7	2:50:00	0.71	2.90	84.212	329	83	80	0.843	5.012	61.403
1-8	2:55:00	0.50	2.00	89.224	312	82	80	0.707	4.001	51.528
1-9	3:00:00	0.41	1.60	93.225	313	83	80	0.640	3.893	46.661
1-10	3:05:00	0.70	2.80	97.118	327	83	80	0.837	4.848	60.969
1-11	3:10:00	0.74	2.90	101.966	326	84	81	0.860	5.167	62.686
1-12	3:15:00	0.74	2.90	107.133	325	84	81	0.860	5.004	62.686
	3:20:00			112.137						
2-1	3:23:00	1.00	4.00	112.137	387	83	81	1.000	5.981	72.872
2-2	3:28:00	0.91	3.60	118.118	377	83	81	0.954	5.475	69.515
2-3	3:33:00	0.89	3.50	123.593	385	83	82	0.943	5.629	68.747
2-4	3:38:00	0.85	3.40	129.222	388	84	82	0.922	5.459	67.184
2-5	3:43:00	0.84	3.30	134,681	392	84	82	0.917	5.441	66.788
2-6	3:48:00	0.90	3.60	140.122	375	83	82	0.949	5.477	69.132
2-7	3:53:00	0.85	3.40	145.599	397	83	82	0.922	5.520	67.184
2-8	3:58:00	0.33	1.30	151.119	392	83	82	0.574	3.446	41.861
2-9	4:03:00	0.28	1.10	154.565	361	83	82	0.529	3.100	38.560
2-10	4:08:00	0.25	1.00	157.665	374	_ 82	81	0.500	2.657	36.436
2-11	4:13:00	0.30	1.20	160.322	375	82	81	0.548	3.160	39.913
2-12	4.18:00	0.55	2.20	163.482	390	82	81	0.742	4.441	54.043

107.529 82.6 80.8 Total 345.8 81.7 0.761 2.40 Average 0.500 Min 1.00 79.0 1.000 84.0 4.00 397.0 Max

107.529

4:23:00

Isokinetic Sampling Cover Sheet

HOLK.	RPT
Test Engineer:	Test Technician:

Plant Information	Jamber: Circular of Rectangular Client Name: Downstream Diameters: Client Name: Circular of Rectangular Upstream Diameters: Client Name: Condition: Control of Downstream Diameters: Control of Downstream Diameters: Control of Downstream Diameter: Control of Diam	Meter ID: Meter Y Value: AH Value:<	Sampled: 2 Points/Port: 17 Sample Plane: Horizontal or Vertical Points: 20	Static Pressure: 21, 2 Static Pressure: 16 / Avg. (C.5 Determined by: Method 3 or Method 3A CO ₂ %: / Avg. 3.8 O ₂ %: / Servomex Serial #: Orly 4.5 Se	ments: Post-Test Nozzle Verification: 1 2 2 3 4 4	The state of the s
	Run Number: Test Location: Duct Shape: Flue Area: Port Type: Test Method:	Meter ID: Pitot ID: Nozzle Kit ID Probe Length: Pre-Test Nozz	Ports Sampled: Total Points:	Barometric CO ₂ %: Imp and/or Initial Imp. Initial Silica	Comments:	

Appendix A - Page 64

	% ! !	Impinge Outlet Well Temp,	100	200	ē	C/E	N P	73	25	3		^	Š	25	17	2	*	sh	S.	Co	<u>.</u>	27	3		
	ch:	Filter Temp. °F	778	CHI.	249	14.00	251	3,7	752	250	24.9	127	20	47	3	72	250	75.0	25	450	248	23	1251	11	
	C Test Tech:	Pr	270	2 L 2 L	275	2,78	12	70.	754	202	7	2	755	245	242	6/12	200	36	7.4%	12	252	130	75		
		Pump Vacuum, "Hg	J	2 (1	7	4	74	h	1,0	9	No.	2	=				2	<u>)</u>		00	Î	Q			
	ber. nber:	Meter Temp Outlet,	5	7	74	73	77	, r	12	73	74	1/	. 5	7	Ω	(%) (%)	70	Z C	o L	N.	2	T	250		
	Test Number: Operator: Page Number:	Meter Temp Inlet, °F	77	177	イ	7	۲	4	1	1	70	7	Ö	2	720	8	200	- 1		2	Z	De Par	56		
sheet	Lalet	Stack Temp,	6 7	8/3	1174	0,5		750	100	450	368	363	100	5 (2)	101	1403	Š	72	1,00	200	127	20	1286		
Field Data	0/2/14 Pl. Egghanse 5/12	Theoretical Meter Volume, (Vm) ft³, total		69908	シャング	72,51	10000	No.	XXX	25.63	93,44	200	0710	サコス	こって	アンエー	118,179	2000	1,007	12, 440	17.4.17	インプーの	141633	がたが	
Isokinetic Sampling Field Data Sheet		Theoretical Meter Volume, (V _m) ft³,per point	ノカウナ	3110	15000	2,00	12/11/27	クレスプレフ	イングル	2,726	3,978	4.293	0747		1	3,834	3,48	1, K	200	76	627	4554	7	ð	
kinetic	Date: Test Location: Test Method:	Meter Rate, Cubic Feet/	8.4	5	3/2	A P	473	100	? ??	V	32	3	\$	ي م د	200	767	[6]	3	ght.	2 7	17.	7	į		
Isc		Square Root, △P	130	100	ころして	72	122-		学	में	417	45		2 5	1		120	7	177	72/2	1	1 -			
	143903 Kelensons Inc.	Meter Volume (V _m) ft³, Actual	() (B)	2560	2 2 2	12,500	\$0.0K	100-10	30,00	300	07 8 C	97,73	15.25 10.25	10.01V	10.38	114.28	18,020	27.12	58.47	7007	\$ 12 m	J. 25	141.745	147.47	
	Murson Rekerla	Orifice Setting (△H)	7	1.20	77.	36	5.0	B	8	77		3		05/1/	§ €	8	유	1.45	3,	3		3	1,52		
		(d ∇)	, d	2	B,	95	Š	Š	01	300	12	7-	i	171	0	2	6	517		- 4	5	\ 	27		
	Project Number: Client: Plant:		250	41/2	1,0			50	75/1	8/3	100	15	320	くなり	3,48	25	270	0S01	X	8	5		327	12%	
	×	Port-		1		V	2	r	8	* _	<u> </u>	4		7-7	4	4		o.	7			•	77		

PLANT: Joseph Behr Pockfor	d Facility								
UNIT NO: TPH Baghouse									
LOCATION:									
DATE:									
TEST NO:									
METHOD:5/12									
WEIGHED/MEASURED BY:									
S10-39									

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER		
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS		
IMPINGER 1	960.4	63.0				
MPINGER 2	909.6	684.7				
IMPINGER 3	757.8	638.7				
MPINGER 4	886.6	850.6		C NEURALIN		
MPINGER 5			W			
IMPINGER 6						
IMPINGER 7						
IMPINGER 8						

IMPINGERS .	2621.8	2016,4	(05.4
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA	886.6	856.6	30 TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet
Test Engineer:

	1	
Plant Information	Date: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Meter and Probe Data
(Run Number: Test Location: ARV (Sectangular Buct Shape: Circular of Rectangular Flue Area: Port Type: Test Method:	

	L2C) :	1184 K	Filter Number/Weight: 7479 / 0.475/	Thimble Number/Weight:	※ フー® クラマー **	(e.1 ' "H ₂ O
Meter and Probe Data	1, 029 AH Value:	Train Type:	7398 Filter Nur	Class Thimble	Post-Test Nozzle Leak Check:	Post-Test Pitot Leak Check:_
Meter a	Meter Y Value:	Pitot Coefficient:	Nozzle Diameter:	Probe Liner:	PH. 5/ @@35	163,5 "H30
	Meter ID: CA2	Pitot ID: 9%	Nozzle Kit ID (OF (3)	Probe Length:	Pre-Test Nozzle Leak Check:	Pre-Test Pitot Leak Check:

	Min/Point:	Sample Plane: Horizontal or Vertical
Traverse Data	Points/Port: /2	Total Test Time: 120
	Ports Sampled: 7	Total Points: 74

Stack Parameters	•	/ /Avg. (4,7) Determined by; Method 3 or Method 3A	Servomex Serial #: 0/460//450	r Weight: 24%6 Imp. Volume or Weight Gain: 4/5. 5	ること、 Silica Weight Gain: ペン	
Stack	Static Pressure:	02%:	510-39	Final Imp. Volume or M	Final Silica Weight:	
	Barometric Pressure: 61,00	CO, %: / / Avg. 4.7	Imp and/or silica balance Model and S/N:	Initial Imp. Volume or Weight: 23042	Initial Silica Weight: \$23.2-	•

Comments:

Post-Test Nozzle Verification:

1 1 1	Impinger Outlet Well Temp. °F	89	79	er	67		00	8	55	6	XV)	207	72	80	0	29	30	10	200	3		
;; —	Filter Temp. °F	C27	13	24.5	35	279	2418	çi Çi	260	100	100	272	74	150	129	248	249	11	125	1		
Test Tech:	Probe Temp. "F	365	242	247	240	247	24%	25.5	27.72	9	243	250	▼ 7-	125	N.	7.00	248	7/2	127)		
美	Pump Vacuum,	20	7	4 6	40		000	200	14		qu	V	9	11	20	0	20,	١,	2 4	7		
ber: nber:	Meter Temp Outlet,	Cáx		15	2	NA NA	8	200	86	3 (50	200	3	Q.	0	5	5	5	7	/ %		
t Test Number: Óperator: Page Number:	Meter Temp Inlet. °F	808	9	Sk	80 F	9N X	28	X	S &		20		8	8	× 0	1	78			So .		
a Sheet	Stack Temp,	45,4	430	97	3,	52	Ş	617	726		36		386	350	101	23	P 1 1 1	407		22		
Field Data	Theoretical Meter Volume, (Vm) ff ³ ,	100	50.02	250	76.77	2000	SI 319	11-1,00	70,477	96208		200	103.626	106(2)	2 2 2	111 226	12.90	がなさ	175	128/7		
ampling A	Theoretical Meter Volume, (Vm.) ft.³, per	800	200	3.864	198	2/8	715	4.531	405.5	13.13	1861	るから	3,055	21.36	77 77	25	702	11-11	3.614	المارد		i
Sokinetic S Date: Test Location: Test Method:	Min	207	35	La	F	700	4	98	38	Q A	386	4-	عَيْ	47.75	£ 00	200	1,0460	장마	127	79		
Bokin Pate:			100	8-1	3		57.5		2,	207	38	N. T.	200	15	777	3/	15.5	12/1	1.54	1337		
SOS Frollin	Meter Volume (Vm) ft³,	48.638	2/1/20	シブラ	5,00	10.90K	01710	200	20,200	96,233	96-273	Š	03.730	106,82	0110	7007	75.5	らしくして	131.00	いって		
ROLLEGE AND THE ROLLEGE AND TH	Orifice Setting	Ç	200	2	(3)	3.50	200	27.40	3	Į.	<u>L</u> .	3	110	ile	200	26	200	الر	معازا	7.5		
	â		ŞŢ	34	2	100	Sex Sex	ig Pi	+/	2	107	30	2	8	e d	100	120	Y	2			
Project Number: Client: Plant:	Î	¥ 5	3/2	6/2	22.20	727	36	17 30	了 六	1200	1258	323	5 r	7	13.2	7,77	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	35	134%	125 V		
202	Port-		100	40	7	18	× 13	- 2	. =	~	7	7	7	r	<u>ب</u>	L 3	Apı	pen	dix	A - I	Page (67

PLANT: JUSEPH Behr ROCKford For to
UNIT NO: TPU BAGIONASE
LOCATION: Inlet
DATE:
TEST NO:
METHOD:
WEIGHED/MEASURED BY:
5/2 30

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
MPINGER 1	929.2	730.6		
MPINGER 2	886,4	679.3		
IMPINGER 3	604	594.4		
IMPINGER 4	828.9	809.2		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS	2419.6	2004.3	415.3
•	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA	828.9	809.2	19.7
•	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet

1	130
lest Engineer:	Test Technician:

	Project Number: Karkee Kalling Diameter: 71 Downstream Diameters: 71 Port Diameter: 64
Plant Information	Client Name: Jacob Rockow Plant Name: Length: Or Diameter: Downstream Upstream Diameters: Or Length: Port Length: Port Length: Downstream Source Condition: Downstream
	Run Number: Test Location: Duct Shape: Flue Area: Port Type: Test Method:

	AH Value: 1.75 Section 1.75 Sect
Meter and Probe Data	ot Coefficient: Szle Diameter: Obe Liner: "Hg Post-Test Nozzle L
	Neter ID: We Pitot ID: Pit

	Min/Point: Sample Plane: Horizontal or Vertical	
Traverse Data	Points/Port: 12 Total Test Time: 120	
	Ports Sampled: 7	

	Serial #: Children By: Method 3 or Method 3A Serial #: Children Weight Gain: Children Silica Weight Gain: 36.7
Stack Parameters	itatic Pressure: / / /Avg. / / Servomex / Servomex / / / / / / / / / / / / / / / / / / /
	Barometric Pressure: 78, 25 S CO ₂ %: / Avg. 3,6 C Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: 20,9 F Initial Silica Weight:

Comments:

Post-Test Nozzle Verification:

	11 1. 1	San
	÷	HALLY LOS SESSES SESSES SESSES SESSES SESSES SESSES
	2 of of	12 12 12 12 12 12 12 12 12 12 12 12 12 1
		LENNE GLAST FOR NOWN, WARMIN,
	ber: nber:	The State of the s
	Test Number: Operator: Page Number:	The second of th
Sheet		कू हैं में दूरी हैं के प्रतिस्था के कि के कि
∹eld Data	1000	Sold State of the
Sokinetic Sampling Field Data Sheet Date: Date: Date: Date: Date: Date Sheet Date Sheet Date: Date	Theoretical Neter (Vm.) ft., per point point point point point to the control of	
rinetic (Date: Test Location: Test Method:	Seath of the seath
Sok		Source So
	13547 Sand Feed To	* E.T. = 25 0 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Muzsy Rocker	Setting Settin
	,	8 5 40 1 Lasta Ling 9 4 46 5 C 25 3 2 1 = 6
3	Project Number: Client: Plant:	いっているというとうというというできませんできます。
	ł O d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

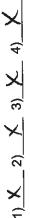
PLANT: Joseph Behl Zookfold Fazility
UNIT NO: TPU BAGHOUSE
LOCATION:
DATE: 10/2/14
TEST NO:3
METHOD: 5/1/2
WEIGHED/MEASURED BY:SS

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
MPINGER 1	940.9	689.6		
MPINGER 2	872.0	691.0		
MPINGER 3	873.0	637.8		
IMPINGER 4	887.1	850.4		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS	FINAL TOTAL	PO18-4	667.5 TOTAL IMPINGER GAIN
SILICA	FINAL TOTAL	850.4 INITIAL TOTAL	34.7 TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet
Test Engineer:

	Project Number: M193903 Plant Name: Rock-hote - hote hy or Diameter: 1.5 + 1 Downstream Diameters: 2 Port Diameter: 6
Plant Information	Since Condition: 10-2-14 Project Nume: 10-2-14 Plant Name: 17-14 Plant Name: 17-14 Plant Name Plant Name I 7 6 7 O Diameter: 20, 5 Downstrea Port Length: 6, 0, 5 Port Diame
	Run Number: Test Location: Duct Shape: Flue Area: Port Type: Test Method:


	AH Value: 616 Train Type: ander501 Filter Number/Weight: #747# Thimble Number/Weight: @ /2 "Hg Leak Check: OO @ /2 "Hg ak Check: OO @ /2 "H2O	
Meter and Prope Data	Meter Y Value: 1,004 Pitot Coefficient: 0.84 Nozzle Diameter: 0.30/ Probe Liner: 0.055 @ % "Hg Post-Test Nozzle Leak Check: 0.00 0.0	
	Meter ID: CM (8 Pitot ID: 170.4 Nozzle Kit ID +0 How +7 Probe Length: 4 +7 Pre-Test Nozzle Leak Check: .00 Pre-Test Pitot Leak Check: .00	

	Min/Point: 5 Sample Plane: Horizontal or Vertical
Traverse Data	Points/Port: 12 Total Test Time: 120 2020
	Ports Sampled: 2 Total Points: 24

Stack Parameters	Static Pressure: O. S. /Avg. VA9C Determined by: Method 3 or Method 3A S. / Avg. VA9C Determined by: Method 3 or Method 3A S. / Avg. / Final Imp. Volume or Weight: 23.72.4 Imp. Volume or Weight Gain: 37.1.5 Final Silica Weight: Silica Weight Gain: 34.1
	Barometric Pressure: 79.29 S CO ₂ %: / Avg. 2.4 C Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: 2005.4 F Initial Silica Weight: 73.79.9

Comments:

Isokinetic Sampling Field Data Sheet

13 M14390 Project Number:

Client: Plant:

Test Method: Date:

Test Location:

Operator: Page Number: Test Number:

M Test Tech: ф N. J.

<u>.</u>	u1	Т	Т		T	_	T	\neg	П	Т	- 1			Т		T		Т	7	П	\neg	\top	T	\Box		- 1		\neg	
Impinger Outlet Well	=	77		2		(7) (4)	- 1	- 1	SS	5 8	32	X)		1	5.7	09	00	09		29	9	0	09	0	09	09			
Filter	Temp. °F	250	152		200	152	057	157	152	250	250	250			250	250	152	251	250	250	500	250	250	252	250	251			
Probe	Temp. °F	5	752	757		250	250	750	152	251	250	200			250	15%	252	250	252	250	250	250	251	250		250			
	-	4	2	3,5	4.0	4.0	5	4.0	4.0	ے ک	Ć. 7	6.0			0.0	0.0	2,0	12.0	12.0	12.0	17.0	12.0	12,0	12.0	11.0	11.0			
Meter Temp Outlet,		70	70	7	7	72	12	74	73	24	100	76	7.7		196	79.	80	80	80	81.	20	~	X	×	82	82			
Meter	Inlet, °F	7	72	12	70	ħζ	75	76	76	77	7%	0	, oc		/8	82	82	2%	83	18	83	83	× ×	\ \ \	83	h8	- 30		
Stack Temp,	_	290	7 66	757	257	750	346	23	23.3	10%	26.3	XX	+	_	297	-	2	305	_	308		304	203	_	296	29	10		
Theoretical Meter Volume,	total		18195	766.36	101 331		ωl.	47X X01	1.0	787 21	110 791	119.006	122.558	126 107		130 590	12	128.870	142 784	146.741	150.698	154.612	158,102.		164.9%1	X12, X91	171.655		
Theoretical Meter Volume,	point	5.632	7.277	SXCN		2000	2350	7	٠١ ،			2 49 C	2		SUNT	12	216 7	216	7 957	3,957	2.914	2 490	065 2	2 389	~	3, 22,7			
K . /%0 Meter Rate, Cubic Feet/	Min.	528	250	407		000	+-	100	475	155	120	× 2	×57		891	105	~ × ×		791	106	'	1	× 500	, ,	1,067	1			
Square Root,	₽V	591	•	787	212	りつけ	002	XX		7,74	C29	160	ğ	?	7,47	1,50			1 -		<u>_</u> `	59	>9	472	775	566			!
Meter Volume	Actual	92.690	4	9× 74×	١			15X XX7	11 777	12 610	4.	130 -000	177 [7]	١.		76.73	124 818	٩.	147 916	٠.	┥ _:		158	77 - 77	5/1 5/1	168 5/7			
K, 4.0/9 Orifice	(A∆)	7.1	05	1	10	+	90	000			100		1.77	1 - 1	2 "	0.0	70) «	00	×	0	7	7 . 1	~	7	10	1		
	(AP)	(M)	27		*-	0	2	20	12	1	3 0	07	100	7	1	- 1	, 0 ,	172	2 11	45	なな	ر د د	125	12	12	300	\		
	Time	0079	0	c	2000	74.5		2000	2000	0000	000	20 07	200	100	10/0	770	250	100	250	104	1000		7 7	7 7	7	1 1 7 7	1127		
t	Point #.	+	T.	je	_	\top	\Box	٦ مر	+	× .	┰		= 2	7	1	7-	7	1	, \ \	1	۲ و		do	, ,	2 3		j.		

PLANT: Jo	eph Behr Rockford Facility
UNIT NO:	TPU Baghouse
LOCATION:_	Stack
DATE:	10121.4
TEST NO:	
METHOD:	5/12
WEIGHED/ME	ASURED BY:
DAL ANCE ID	510-39

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	995	749.2		
MPINGER 2	839.6	729.2		
IMPINGER 3	545,3	527.0		
IMPINGER 4	860.1	836.0		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8			<u></u>	

IMPINGERS	2379.9	2005.4	374,5
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA	₹60.1	836.0	7-4.1 TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet
Test Engineer: A Y

	Project Number: M(43603 Plant Name: Rock-ford Amount) A or Diameter: 1.5 4.4 S Downstream Diameters: 5.2 Port Diameter: 6.7
Plant Information	Iroular or Rectangular Apple Port Length: A/A Width: A/A Upstream Diameters: > 0.5 Port Length: 6.10 Source Condition: Activate
	Run Number: Test Location: Duct Shape: Flue Area: Port Type:

	AH Value: 1, 6 5 Train Type: 6, 6 5 Filter Number/Weight: 7478
Meter and Probe Data	Meter Y Value: 1.004 Pitot Coefficient: 0.84 Nozzle Diameter: 0.30/ Probe Liner: 0.1353 R: 00 @ 12 "Hg Post-Test Nozzle K: 00 @ 12 "Hg Post-Test Pitot Le
	Meter ID: CM (8 Pitot ID: (70 A) Nozzle Kit ID + 0+10-1 Probe Length: 4 f 1 Pre-Test Nozzle Leak Check: Pre-Test Pitot Leak Check:

	Min/Point: Arrizontal Sample Plane: Horizontal or Vertical	
raverse Data	120 2	
	Points/Port: Total Test Time:	
	7 7 3	
	Ports Sampled Total Points:	

	16・5 Determined by: Method 3 or <u>Method 3A</u> Serial #: 0 1940か / 43&5 Imp. Volume or Weight Gain: 544.6 Silica Weight Gain: 33・8
Stack Falanierers	Static Pressure: 0, 5 O ₂ %: / / / / / / / / / / / / / / / / / /
	Barometric Pressure: 29.29 CO ₂ %: / Avg. 2.4 Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: 1896 Initial Silica Weight: 84/.2

Comments:

Isokinetic Sampling Field Data Sheet

13903 Project Number:

Client: Plant:

Test Location: الم Test Method: Date:

D-2-01 20 112

Page Number: Test Number: 42, se 0,16-1 Operator:

アドハ TestTech: AV ð

		Т		T	\neg	т	Т	\neg	Т	П	T	T	T		П	П	$\neg \tau$	\neg	\neg			. [T				\neg	$\neg \neg$	
lmpinger	Outlet Well Temp. °F	00	X	25	20	9	9	00	19	1,9	19	9	9		19	19	19	19	9	9	09	00	9	63	2	63			
	Filter Temp. °F	152	250	2.50	250	250	755	255	251	250	250	250	250		250	251	250	251	25/	150	250	156	250	250	250	152			
	Probe Temp. °F	750	250	250	254	251	25/	25/	250	250	250	250	250		250	250	252	250	251	250	252	250	250	250	250	251			
	Pump Vacuum, " Hg	4.0	4,0	4.0	4.0	٠,١	2.5	4.0	4.5	5.0	5,0	5.0	4.5		3.0	3.0	3.0	3.0	3.0	- ,1	3,5	2.5	4.5		3.5	3,5			
Meter	Temp Outlet,	83	83	X	X	84	84	84	84	68	X	83	X		82	28	18	18	18	18	18	X	18	18	81	80			
	Meter Temp Inlet, °F	84	85	38	9×	98	98	87	86	9%	9X	85	85		82	83	82	82	82	82	83	2.8	\$3	83	83	%			
	Stack Temp,	284	281			296	300	329	333	622	330	299	295		270		200	277	264	257	~	1286	0	23	236	253		14	
Theoretical Meter	Volume, (V _m) ft³, total		25. 135	86.625		Ι,	5.66 76	100.234	104.942	025 801	1 -	118.077		123.530		228 921	128.618	131.740	134.690	137.640	140.407	143.897	147.720	150.223	(52.990	156.112	159.062		
× 〜 Theoretical Meter	Volume, (V _m) ft³,per	3 490	1 .	2 400	3.440	5.440	3389	7. 60×	809.4	4 570	2 957	2.900	7.503		2.285	٠. ا	٠.	2.950	2,950	2.767	3,490	2.823	١ ١	2.767	3.122	2.950			
K 1.180 Meter Rate,	Cubic Feet/	869.	X09	889	888	××,	677	921	126.	7/5	2	060	Sol		457	1777	624	665	290	.553	869	292.		.553	469.	١.,			
	Square Root, ∆P		4	583	583		472	12	781	774	129	200			2 X 7	787	. 22	1	50	Ι,	. 5	_	42	69 h		1			
Meter	Volume (V _m) ft³, Actual	249 67	1- 4	ı		93 787	١.	00 588		109 722		120	1.	الحاط	2 d 048	126 48-	128 744		124.773	137.728	140.527	143,915	147,827	150.421	152 225	1 .			
K,4.019	Orifice Setting	- 4	77	ı		7	5	2.5	1.	13	•		72		07	07		- C	3 0	88	4	1	77	88	-	0.7			
1	(dV)	2	21	24	76	24	22	100	2 - 2		200	77	<i>i</i> ~		3-	1	286	25	27	12	25	77		27		25)		
	Ē	1155	1200) L	2 6	1 -	5 20	500	02.0		1		- 1		2000		× 0 C	17.12	\ \ \ \ \ \ \ \	- \	10	17 2.3	12.4	1243	× 1. c.	125%	1158		
	Port-	-	_ ^	3 ~	=	2	2	31	a	0	-	0 =	- 2		r		7 6	\ =	- 0	70	c (2	δ		9	63	2		

UNIT NO: TPU Baghouse

LOCATION: Outlet Stack

DATE: 18/2/14

TEST NO: 2

METHOD: 5/12

WEIGHED/MEASURED BY: 59

BALANCE ID: 315-39

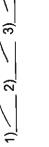
	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	395.2	40006		
IMPINGER 2	880.4	688.6		
IMPINGER 3	659	606.8		
IMPINGER 4	275.9	341.2		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS	2440.6	1896	544.6					
•	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN					
SILICA	875.9	841.2	34.7					
•	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN					

Isokinetic Sampling Cover Sheet
Test Engineer: TEA
Test Technician: MY

Date: 10-2-77 Project Number: 144 3503 Client Name: 10-2-77 Plant Name: 12-12 Length: 14 Width: 14 or Diameter: 15 from 12-12 Downstream Diameters: 2-2 Port Length: 15 from 12-12 Source Condition: 12-12 Source Condition: 12-17 Source Condition: 1
Run Number: Test Location: Duct Shape: Flue Area: Port Type: All Port Corlet Circular or Rectangular Flue Area: All Port Corlet All Corlet Al

	AH Value: 1, 616 Train Type: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
Meter and Probe Data	Meter Y Value: 1.0.0.4 AH Value: Pitot Coefficient: 0.8.4 Train Type: Nozzle Diameter: 0.8.4 Train Type: Probe Liner: 0.8.4 Thimble Numb Probe Liner: 0.8.4 Thimble Numb Probe Liner: 0.8.4 Thimble Numb May Post-Test Nozzle Leak Check: 0.8.4 Post-Test Pitot Pito
	Meter ID: Cm (8 Pitot ID: 170 A Nozzle Kit ID 404 Cm Probe Length: 4 F4 Pre-Test Nozzle Leak Check: 0015 Pre-Test Pitot Leak Check: 015


l'raverse Data	Points/Port: 12 Min/Point: 5 Colors Sample Plane: Horizontal or Vertical
	Ports Sampled: Z Total Points: Z 4

	(Serial #: O !\frac{10}{1490} \frac{10}{1438}\$ O !\frac{1400}{1400} \frac{1438}{1438}\$ S Imp. Volume or Weight Gain: \frac{582.3}{3/.2}\$ Silica Weight Gain:
Stack Parameters	Barometric Pressure: 29,29 Static Pressure: 0.5 /Avg. 10.10 Determined by: Method 3 or Method 3A CO ₂ %: / / Avg. 29 /2%: / / Avg. 29 Servomex Serial #: 0.1440.01 /438/s limp and/or silica balance Model and S/N: 510-39 Servomex Serial #: 0.1440.01 /438/s linitial Imp. Volume or Weight: 2004.8 Final Imp. Volume or Weight: 2582.3 linitial Silica Weight: 874.8 Silica Weight Gain: 37.2

Comments:

Post-Test Nozzle Verification:

DS-005 M5 Isokinetic Field Data Sheet

Isokinetic Sampling Field Data Sheet

Project Number: Client: Plant:

Test Location: Test Method: Date:

Page Number: Test Number: / Operator:

TFN Test Tech: ₫

mpinger Outlet	Well Temp. °F	0	2/	5/	7	5%	52	56	56	53	7	5	Ó		/ 2	58	29	19	27	63	11	24	50	99	28					
	Filter Temp. °F Te	0	250	50	250 4	250		+	+		252 5	250 5	20	-	52	03	251	S	52	250	252	250	052	5/	15	7 > 1		+	-	-
		25		~	7				7	0		1	N	-	7	1 2		2				Н	_		1		-	+	+	-
	Probe Temp. °F	250	250	255	1250	252	250	S	25	25	1250	25,	250		250	25	250	250	250	251	1250	250	-		25	20		+	+	-
0	Vacuum, " Hg	4.5	5.5	6.5	7.0	7.5	8	9.0	8.5	7.0	7,0	9.5	10.0		11.5	11.0	1.0	0	=	12.0	17.0	(2.0	12.0	12.0	×		4	1	_	
Meter	_	X	79	80	X	XO	X	80	80	CX	80	X	X		18	18	% %	87	82	X	X	X	82	X	-0	(×	3	-	_	
1000	Temp Inlet. °F	X	XOX	×	X	\ \ \ \	×.	X '\'	82	×3×	23	80	bα		83	X	X		XC	200	X	X	~ ×	82	62		30		1	
1000	Temp,	28/	0 X/	790	789	30	324	329	312	I -	127	32.6	325		287	1.	280	28 X		_	_	1-	-) ~	1	100	_	+		
Theoretical Meter	Volume, (Vm) ft³, total		172 571		7. 158	76 //5	2	٠, ١	4	4	1 .	X	106.971	17.046		118.027	•	170 72/	N .	<u> </u>	7 1 27 JA	10.00	- 0	네	9 2	160 462		161.164		
x 5 Theoretical Meter	Volume, (V _m) ft³,per	3 177	7 957	-	٠	75	6	-	4 - 7 -	7	0	(0		5 900	2 7		7	M.	200		14	100	-	7,5	1.63.	~			
75	Cubic Feet/	635	707	826	+	×	000	755	824	75.5	(X O	500	0		8	2 :	7	12.	× ×		- 0	(777	170.	1000	335,	9 69 6	5/5			
	Square Root,	X	7.00	100		100	200	800	707	201	000	200	03%	2	-	00.0	*	1	-	1	1	77.1	1 5	57	~	1			_	
Meter	Volume (V _m) ft ³ ,	7 7 50 C		7 0	٠	7/2011	279.57	1	4	+	w	3/0	107 122	•	16.15	7			777	124 62		45.27	٦,	124.000	200		-1	167,92		
K, 4,019	Setting	(PA)	7 7	800	5.0	0:	*	00	•	0.1	٥٠٠	٠.	200			, ,	3.6	_1	•	~i	1	5 ° C	1		0.	1,2	2.2			-
	í	(AP)			7	3	35	0/2	- 5	0	5.	0/1		11.		0	5 (X	××.	184	.40	× .	35	N.	570	130	25,			
·	i	e lime	0 2 4		. 1	2	200	(445)	1450	1455	1500	C.	0 / 5 /	1	0751	1523	1528	1533	1538	15 43	+1		X2 X2 X2	603	1608	1613.	161	1623		
	Port-	Point #.	- 1	7	\ \	5	2	او		Si (2	0	- !	7.	-	7	7	~	- T	h	· s	7	_∞	5	4	liv	2	D.		79

PLANT:	Joseph Bohi Rockboard Face	l.÷ý
UNIT NO:	TPU Baglouse	9:11
	Stack	
DATE:	10/2/14	
TEST NO:	3	
METHOD:	5/12	
WEIGHED/M	EASURED BY: 45	
DAL ANCE ID	S 10-3 9	

SVSEIN	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	962.4	749.1		
IMPINGER 2	9482	727.4		
IMPINGER 3	456.0	528.1		
IMPINGER 4	874.8	843.4		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS .	2587.1 FINAL TOTAL	2004.8 INITIAL TOTAL	582.3 TOTAL IMPINGER GAIN
SILICA	874.8	843.6	31.2
•	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

CI Te Se	roject Numberlient: est Location: ource Conditions est Engineer: Duct Diamer Flue Area Port Length Par Static Static Ps	on: eter <u>1,75</u> "Hg "H ₂ O "Ha	1143 1200 B 1200 B	GU3 ebra-Son well DWE	Upstream Dis Downstream Pitot ID Wet Dry E	Date: Test Start End ⁻ Test turbance, Disturbance,	Number: Time: Time: Tech: ameters Diameters efficient (C	Leak Pre Post	Checks P	assed@ ches H₂O aches H₂O	
	Port-Point #	AP 79 77 70 70 70 70 70 70 70 70 70 70 70 70	Temp. °F 474 477 477 477 477 477 477	- ΔP	Null Point Angle, Degrees	Port-Point # 7-1 2 3 3 4 4 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	AP -15 -14 -15 -14 -13 -13 -13	Temp. °F 357 425 439 439 439 439 439 439 431 471 475	VΔP	Null Point Angle, Degrees	
	85.49 ×	Md × <cp s ×</cp 	$\times \sqrt{\underline{}}$ _Flue Area	ws) + (18 × Ms × × 60 =	(Md)Bws):NTs °RPs ×scfm x 60	√Δ _acfm	P =	ft/sec	(Vs) 5	042 9 1.34 2.36 3.55 . 5.21 . 7.13 . 12.36	u. 17.67

Appendix H - Calibration Data

MOSTARDI PLATT

Procedures for Method 5 and Flow Calibration

Nozzles

The nozzles are measured according to Method 5, Section 5.1

Dry Gas Meters

The test meters are calibrated according to Method 5, Section 5.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.

Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to the specification described and illustrated in the *Code of Federal Regulations*, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 4; and the pitot tube assemblies are in compliance with specifications in the same section.

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM18
Standard Meter No. 16745468
Standard Meter (Y) 1.0039

September 26, 2014	TFN	29.59	
Š			

Calibrated By: Barometric Pressure:

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	_	Dry Gas Meter	Dry Gas Meter				
	Setting in H ₂ O		Gas Volume	Temp. F°	Inlet Temp. F°	Outlet Temp. F°	Avg. Temp. F°	Time	Time		
Run Number	Chg (H)	W	ρΛ	tr	tdi	tdo	td	Min	Sec	>	Chg (H)
Final		43,425	60.658	77	73	72					
(nitia)		38.334	55.555	70	11	71					
Difference 1	0.20		5.103	71	72	72	72	18	8	1.000	1.438
Final		48.845	66.060	71	73	72					
Initial		43.763	60.978	7.1	72	72					
ence	2 0.50	5.082	5.082	71	73	72	72	12	2	1.001	1.603
Final		54.752	71.953	72	74	73					
Initial		49.633	66.843	7.1	73	73		_			
ence	3 0.70	5.119	5.110	72	74	73	73	10	19	1.003	1.613
Final		60.786	77.972	72	74	23					
Initial		55.286	72.490	7.1	73	73					
ence	4 0.90	5.500	5.482	72	74	73	73	6	52	1.004	1.643
Final		026.99	84.148	72	74	73					
Initial		61.676	78.874	7.1	74	73	<u> </u>				
өлсө	5 1.20		5.274	72	74	73	74	8	28	1.005	1.740
Final		38.003	55.217	20	7.1	7.1					
Initial		32.367	49.662	20	71	7.1	<		İ		
ence	6 2.00	5.636	5.555	70	71	71	71	9	49	1.011	1.657

1.616

1.004

Average

Stack Temperature Sensor Calibration

Meter Box # :

CM18

Name:

TFN

Ambient Temperature :

71

Date:

September 26, 2014

Calibrator Model #: CL23A

Serial #:

T-249465

Date Of Certification : December 13, 2013

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (°F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	0	0.0
250	252	0.3
600	604	0.4
1200	1212	0.7

(Ref. Temp., ${}^{\circ}F + 460$) - (Test Therm. Temp., ${}^{\circ}F + 460$) * $100 \le 1.5 \%$ Ref. Temp., °F + 460

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM30
Standard Meter No. 16745468
Standard Meter (Y) 1,0039

Date. Calibrated By: Barometric Pressure:

September 24, 2014 SVD 29.62

Setti Run Number Final Initial Difference 1	Chg (H)	Gas Volume	חוץ פמא ואופוניו		Dry Clar Marer	Dry Gas Meter	Dry Gas Meter				
un Number	0.20	14	Gas Volume	Temp. F°	Inlet Temp. F	Outlet Temp. F	Avg. Temp. F°	Time	Time	>	Chg (H)
Final Initial Difference 1	0.20			3							!
Initial Difference 1	0.20	29,921	89.247	75	92	75					
Difference 1	0.20	24.669	84.002	74	22	74				,	
Final		5.252	5.245	75	92	75	75	20	30	1.002	1.740
		44.640	103.876	74	78	75					
Initial		39.326	98.610	74	75	74					
Difference 2	0.50	5,314	5,266	74	77	75	76	13	4	1.011	1.722
١		49.876	109.090	74	78	92					
Initial		44.640	103.876	74	78	75			ŀ		0
Difference 3	0.70		5.214	74	78	76	77	10	49	1.008	1.697
		54.967	114.144	74	79	76					
Initial		49.876	109.090	74	78	92					
Difference 4	0.90	5.091	5.054	74	79	76	77	6	17	1.011	1.699
Final		60.430	119.573	22	79	76					
Initial		54.967	114.144	74	79	92	N				1
Difference 5	1.20	į	5.429	75	79	92	78	80	20	1.009	1./84
Final		24.415	83.750	74	75	74					
Initial		17.603	77.031	7.1	73	74	.				
Difference 6	2.00	6.812	6.719	73	74	74	74	æ	32	1.012	1.782

1.737

1.009

Average

Stack Temperature Sensor Calibration

Meter Box # : CM30 Name : SVD SVD

Ambient Temperature: 70 °F Date: September 24, 2014

Calibrator Model # : CL23A

Serial # : <u>T-249465</u>

Date Of Certification : August 7, 2012

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (°F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	3	0.7
250	252	0.3
600	602	0.2
1200	1201	0.1

<u>(Ref. Temp., ${}^{\rm o}{\rm F} + 460$) - (Test Therm. Temp., ${}^{\rm o}{\rm F} + 460$)</u> * ${}_{100} <= 1.5 \%$ Ref. Temp., ${}^{\rm o}{\rm F} + 460$

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM30
Standard Meter No. 14152939
Standard Meter (Y) 1.0010

October 15, 2014 SVD 29.09

> Calibrated By: Barometric Pressure:

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter				
	Setting in H ₂ O	Gas Volume	Gas Volume	Temp. F°	Inlet Temp. F°	Outlet Temp. F°	Avg. Temp. F°	Time	Time		
Run Number	Chg (H)	Vr	vď	tr	tdi	tdo	td	Min	Sec	٨	Chg (H)
Final		69.648	43.837	0.2	02	89					
Initial		64.469	38.662	89	29	99					
Difference	1 0.20	0 5.179	5.175	69	69	29	68	20	13	0.998	1.760
Final		74.870	49.032	71	71	69					
Initial		69.648	43.837	02	70	89					
Difference	2 0.50	0 5.222	5.195	71	71	69	70	12	43	1.002	1.716
Final		80.856	25,000	73	74	11					
Initial		74.870	49.032	11	71	69					
Difference	3 0.70	0 5.986	5.968	72	73	20	71	12	28	1.000	1.762
Final		86.254	60.379	73	75	72					
Initial		80.856	22.000	73	74	71					
Difference	4 0.90	0 5.398	5.379	73	75	72	73	6	15	1.001	1.534
Final		91.413	65.527	73	75	7.5					
Initial		86.254	60.379	73	22	7.2	N				
Difference	5 1.20	0 5.159	5.148	73	75	72	74	8	80	1.000	1.730
Final		64.469	38.662	89	29	99					
Initial		57.726	32.031	29	99	99	<				·
Difference	6 2.00	0 6.743	6.631	89	29	99	99	8	15	1.009	1.724

1.704

1.002

Stack Temperature Sensor Calibration

Meter Box #:

CM30

Name :

SVD

Ambient Temperature :

66 °F

Date:

October 15, 2014

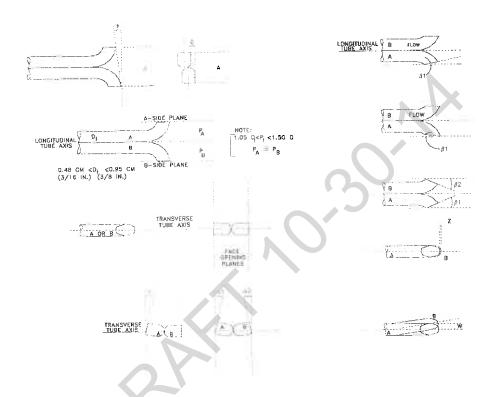
Calibrator Model #: CL23A

Serial #:

T-249465

Date Of Certification: August 7, 2012

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)


Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	3	0.7
250	252	0.3
600	602	0.2
1200	1202	0.1

(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) $*100 \le 1.5\%$ Ref. Temp., °F + 460

S TYPE PITOT TUBE INSPECTION WORKSHEET

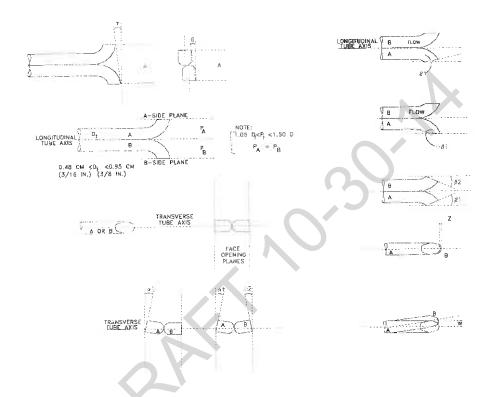
Pitot Tube No:	123	Date:	9/2/2014	Inspector's Name:	AHAS

Type of Probe: (circle one) M2 M5 M17 Probe Length: 11 ft.

Pitot tube assembly level? x yes _____nc

Pitot tube openings damaged? ______yes (explain below) ____x __n

$$a_1 = 4$$
 ° (<10°), $a_2 = 4$ ° (<10°) $z = A \sin g = 0.049$ (in.); (<0.125 in.)


$$b_1 = 2^{\circ} (<5^{\circ}), \qquad b_2 = 1^{\circ} (<5^{\circ}) \qquad w = A \sin q = 0.016 \text{ (in.); (<0.03125 in.)}$$

$$\gamma = \frac{3}{4}$$
, $\theta = \frac{1}{4}$, $A = \frac{0.929}{4}$ (in.) $A = \frac{0.465}{4}$ (in.), $A = \frac{0.465}{4}$ (in.), $A = \frac{0.375}{4}$ (in.)

Calibration required? _____yes ___x ___no

S TYPE PITOT TUBE INSPECTION WORKSHEET

Pitot Tube No:	170	-		Date:	9/19/2014	-		Inspector's Name:	AMH
Type of Probe: (circle on	ne) M2	M5	M17		Probe Length:	4	_ft.		

Calibration required? _____yes ___x__no

S TYPE PITOT TUBE INSPECTION WORKSHEET

Pitot Tube No: _____170 Date: 10/13/2014 Inspector's Name: TFN Probe Length: 4 ft. Type of Probe: (circle one) M2 M5 M17 Pitot tube assembly level? __x__no yes (explain below) Pitot tube openings damaged? $a_2 = 1.5^{\circ} (<10^{\circ})$ $z = A \sin g = 0.020 \text{ (in.); (<0.125 in.)}$ _____° (<5°), 1.5 ° (<5°) w = A sin q = 0.020 (in.); (<0.03125 in.)

1.144 (in.)

_____yes <u>x</u>_no

Calibration required?

 $P_A = 0.572$ (in.), $P_B = 0.572$ (in.), $D_t = 0.375$ (in.)

Nozzle Calibration Sheet Teflon Set #7

Nominal Diameter	.120	.175	.200	.230	.275	.300	.310	.350	.375	.500	Other
Nozzle Diameter	.125	.175	.216	.232	.280	.301	.313	.365	.398	.520	.420
Nozzle Identification Number	4	6		8	9	10	1	12	13	#16	

WEIGHING SOLUTIONS INC.

SALES-SERVICE-RENTALS 3310-14 N. HARLEM AVENUE CHICAGO, IL 60634

PHONE 773-836-2800 FAX 773-836-2891

Appendix A - Page 94

C	ALIBRATION REPOR	T
Company Name MOSTARY : PLATT	• —	Model # E 0640
Date JEPTEMBER 4, 2013	2	Serial/ID# 6 0451121051238
Location LAB	_	Manufacturer $OHAUS$ Tolerance $+ 0.050/o$
Weight Set # E 559	-	Tolerance
Capacity <u>62</u> 9	Before Cal.:	After Cal.:
ReadabilityO, Im 4		
Weight # 1	0.00019	0.00019
Weight # 2	1.00009	1:0000 9
Weight #3	10.000/9	10.00004
Weight # 4 20 9	20,00024	20,00009
Weight # 5	50.00049	50,00009
Accept	Reject	
Linearity		
Cornerload		
Repeatability		
Hysteresis		
Comments Cleaned and adjusted calibra	tion to N.I.S.T. specificati	ions.
	Technician 18 State Of IL Registration	WEIGHING SOLUTIONS NO. 1604

Contractor:

Purchase Order #:

Client: Address:

City & State:

Date Received: Date Calibrated: Temperature Range: Pressure Range:

Relative Humidity Range:

Air Density:

Traceable Report #:

NIST Certificate #:

Tested By: Procedure:

Contractor Reg Recall Date:

Primary Standard Calibration Date: Description of Weights:

Although there are two NIST numbers,

one or both may apply.

Weighing Sclutions Inc PO Box 95

River Grove, IL 60171-0095

1268

Weighing Solutions Inc

3310 N Harlem Ave

Chicago, IL 60634

19 OCT 2012 24 OCT 2012

21.41 to 21.72 °C

727.3 to 727.6 mmHg

44 to 46 %

1.1406 to 1.1419 mg/cm3

1927133

681/280058-10, 822/278785-10

Modified Substitution (WI05-0023)

2 Years

02/11/11, 10/21/09 Due: 02/11/15, 10/21/13

100 g. Polished Weight, 50 g to 5 kg Satin Finish Weights & 5-10 kg Satin Finish Grip Handle

Weights, ASTM Class "2", Set S/N 5661

	Conventiona	I Mass Corr.	Unc.		<i>J</i>	Standard Set Used	Assumed
Nominal Value Id.	As Found (mg)	As Left (mg)	K=2 (mg)	Tol. (mg)	Balance Used	Calibrated/due MM-DD-YY/MM-DD-YY	Density (g/cm³)
50 g	-0.118	-0.118	0.026	0.25	1183Q	K594Q 08-10-12/11-09-12	7.85
100 g	-0.143	-0.143	0.049	0.50	1183Q	K594Q 08-10-12/11-09-12	7.84
100 g	-0.221	-0.221	0.049	0.50	1183Q	K594Q 08-10-12/11-09-12	8.00
200 g	-0.020	-0.020	0.059	1.0	619Q	K594Q 08-10-12/11-09-12	7.84
300 g	-1.257	-1.257	0.086	1.5	619Q	K594Q 08-10-12/11-09-12	7.84
400 g	-1.326	-1,326	0.098	1.5	619Q	K594Q 08-10-12/11-09-12	7.84
1 kg	-0.57	-0.57	0.14	5.0	619Q	K594Q 08-10-12/11-09-12	7.84
1 kg	0.90	0.90	0.14	5.0	619Q	K594Q 08-10-12/11-09-12	7.85
3 kg	-5.83	-5.83	0.81	15	975Q	K594Q 08-10-12/11-09-12	7.84
5000 g	-0.8	-0.8	1.1	25	975Q	K594Q 08-10-12/11-09-12	7.84
10 kg	12.1	12.1	1.8	50	975Q	K594Q 08-10-12/11-09-12	7.84
10 kg	16.1	16.1	1.8	50	975Q	K594Q 08-10-12/11-09-12	7.84

Check with your local state agency for certification of compliance on legal-for-trade items.

Prepared By:

Page 1 of 1 Page

24 OCT 2012 Dated Dan Demers Metrologist

230 West Coleman Street • Rice Lake, WI 54868 • USA TEL: 715-234-9171 • FAX: 715-234-6967

Contractor:

Purchase Order #:

Client: Address:

City & State: Date Received: Date Calibrated: Temperature Range:

Pressure Range: Relative Humidity Range:

Air Density:

Traceable Report #: NIST Certificate #: Tested By: Procedure:

Contractor Req Recall Date: Primary Standard Calibration Date:

Description of Weights:

Although there are two NIST numbers, one or both may apply.

Weighing Solutions Inc

PO Box 95

River Grove, IL 60171-0095

Weighing Solutions Inc

3310 N Harlem Ave

Chicago, IL 60634 19 OCT 2012

23 OCT 2012 to 24 OCT 2012

21.00 to 21.79 °C

725.6 to 727.5 mmHg

43 to 49 %

1,1381 to 1,1436 mg/cm³

1927133A

681/280058-10, 822/278785-10

Modified Substitution (WI05-0023)

2 Years

02/11/11, 10/21/09

Due: 02/11/15, 10/21/13

1 mg to 100 g Polished Kit, ASTM Class "1", S/N E559

Indicates As Found >= Tol

		Conventiona	i Mass Corr.	Unc.		Standard Set Used	Assumed
Nominal Value	ld.	As Found (mg)	As Left (mg)	K=2 (mg)	Tol. Balance (mg) Used	Calibrated/due MM-DD-YY/MM-DD-YY	Density (g/cm³)
1 mg	1	0.0057	0.0057	0.0012	0.010 327Q	K594Q 08-10-12/11-09-12	7.95
2 mg		0.0027	0.0027	0.0013	0.010 327Q	K594Q 08-10-12/11-09-12	
2 mg	1 1	0.0048	0.0048	0:0013	0.010 327Q	K594Q 08-10-12/11-09-12	7.95
5 mg		0.0041	0.0041	0.0013	0.010 327Q	K594Q 08-10-12/11-09-12	the second of th
10 mg		-0.0017	-0.0017	0.0018	0.010 327Q	K594Q 08-10-12/11-09-12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 mg		-0.0018	-0.0018	0.0016	0.010 327Q	K594Q 08-10-12/11-09-12	
20 mg		-0.0022	-0.0022	0.0016	0.010 327Q	K594Q 08-10-12/11-09-12	
50 mg		0.0068	0.0068	0.0019	0.010 327Q	K594Q 08-10-12/11-09-12	A Committee of the Comm
100 mg		-0.0056	-0.0056	0.0015	0.010 327Q	K594Q 08-10-12/11-09-12	
200 mg		-0:0029	-0.0029	0.0015	0.010 327Q	K594Q 08-10-12/11-09-12	the second control of the second con-
200 mg		-0.0022	-0.0022	0.0015	0.010 327Q	K594Q 08-10-12/11-09-12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 mg		-0.0072	-0.0072	0.0018	0.010 327Q	K594Q 08-10-12/11-09-12	
1 g		-0.0225	-0.0225	0.0026	0.034 327Q	K594Q 08-10-12/11-09-12	
2 g		0.0134	0.0134	0.0026	0.034 327Q	K594Q 08-10-12/11-09-12	
2 g		0.0179	0.0179	0.0026	0.034 327Q	K594Q 08-10-12/11-09-12	
5 g		0.0052	0.0052	0.0052	0.034 327Q	K594Q 08-10-12/11-09-12	the state of the s
10 g	1	-0.038	0.000	⊠ 0.012	0.050 676Q	K594Q 08-10-12/11-09-12	
20 g		0.053	0.053	0.012	0.074 676Q	K594Q 08-10-12/11-09-12	The state of the s
20 g		-0.046	-0.046	0.012	0.074 676Q	K594Q 08-10-12/11-09-12	Contract of the contract of th
50 g		0.034	0.034	0.026	0.12 1183Q	K594Q 08-10-12/11-09-12	
100 g		-0.289	0.142	☑ 0.049	0.25 1183Q	K594Q 08-10-12/11-09-12	7.95

Check with your local state agency for certification of compliance on legal-for-trade items.

Prepared By:

Page 1 of 1 Page

24 OCT 2012 Dated Dan Demers Metrologist

230 West Coleman Street • Rice Lake, WI 54868 • USA TEL: 715-234-9171 • FAX: 715-234-6967

Registered Technician - Registration Cards

STATE OF ILLINOIS DEPARTMENT OF AGRICULTURE

Registered Technician: 0678 LITTLE JAMES M

Registered Service Company: 1604 WEIGHING SOLUTIONS, INC.

Registered For:

Scale

Expires February 28, 2014

Registered Technician's Signature

The Department of Agriculture requires that all persons selling, installing, servicing, repairing, or reconditioning weighing or measuring devices used in trade or commerce be registered.

This Technician has met all of the qual ifications of the State of Illinois and is currently registered with the Illinois Department of Agriculture in good standing.

Bureau of Weights & Measures Telephone (217) 785-8301

R.406-1122 X021-406-0030

	!			Ambient	Relative	Barometric	Calibration	à	Calibration	/6	Calibration	~
Pre/Post	Date	Time	Analyst	degrees F	numany %	inches Hg	50.0000g	Error	5.0000g	Error	0.5000g	Error
Pre	9/29/2014								ıls			
Post	9/29/2014											
Pre	9/30/2014						y A					
Post	9/30/2014											
Pre	10/1/2014						1. 1.3					
Post	10/1/2014						UK .					
Pre	10/2/2014	8:30 AM	JMG	73	31.0	29.26	49.9997 g	00'0	5.0002 g	0.00	0.5002 g	-0.04
Post	10/2/2014	3:00 PM	JMG	73	33.0	29.26	49.9997 g	0.00	5.0002 g	0.00	0.5002 g	-0.04
Pre	10/3/2014	8:30 AM	JMG	74	35.0	28.88	49.9999 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/3/2014	3:00 PM	JMG	75	30.0	29.03	49.9999 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
					-							
Pre	10/6/2014	8:00 AM	JMG	72	28.0	28.88	49.9999 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/6/2014	3:30 PM	JMG	7.1	29.0	29.03	49.9999 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Pre	10/7/2014	7:00 AM	JMG	72	24.0	29.03	49.9999 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/7/2014	3:00 PM	JMG	74	37.0	29.29	50.0002 g	0.00	5.0000 g	0.00	0.4999 g	0.02
Pre	10/8/2014	8:00 AM	JMG	74	33.0	29.29	50.0001 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/8/2014	3:00 PM	JMG	74	33.0	29.29	50.0001 g	0.00	5.0000 g	0.00	0.5000 g	0.00
Pre	10/9/2014	8:00 AM	JMG	74	33.0	29.29	50.0002 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/9/2014	3:00 PM	JMG	74	37.0	29.29	50.0002 g	0.00	5.0000 g	0.00	0.4999 g	0.02
Pre	10/10/2014											
Post	10/10/2014											
									7 f.			
Pre	10/13/2014	8:00 AM	JMG	20	31.0	29.23	50.0002 g	0.00	5.0000 g	0.00	0.4999 g	0.02
Post	10/13/2014	3:00 PM	JMG	74	37.0	29.29	50.0002 g	0.00	5.0000 g	0.00	0.4999 g	0.02
Pre	10/14/2014	8:00 AM	JMG	72	37.0	28.88	49.9997 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/14/2014	4:15 PM	JMG	72	36.0	29.03	49.9997 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Pre	10/15/2014	10:30 AM	JMG	72	36.0	29.03	49.9997 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/15/2014	10:45 AM	JMG	72	36.0	29.03	49.9997 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Pre	10/16/2014	7:30 AM	JMG	71	32.0	29.21	49.9999 g	0.00	5.0000 g	00'0	0.5000 g	0.00
Post	10/16/2014	3:30 PM	JMG	71	32.0	29.21	49.9999 g	0.00	5.0000 g	00.0	0.5000 g	0.00
Pre	10/17/2014										37	
Post	10/17/2014						0 1		r			

Balance II OHAUS Model Explorer S/N 1973

Date:

10/2/2014 M143903

Facility: Rockford Facility Location: Baghouse Inlet (TPU) Operator: STS

Project #: Client:

Joseph Behr and Sons, Inc

Calibration Gases

Type	Setting	Cylinder ID	Cylinder Value	Analyzer Response	Difference, % of Span	Expiration Date	Final Bottle Pressure,	Mid cylinder % of high cylinder
	Zero	Zero Nitrogen	0.00	0.02	-0.11%	NEVER		
CO2%	Mid	CC430492	10.05	10.10	-0.27%	1/17/2022		53.74%
	High	CC17819	18.70	18.71	-0.05%	12/9/2021		
	Zero	Zero Nitrogen	0.00	0.05	-0.23%	NEVER		
02%	Mid	CC430492	12.12	12.10	0.09%	1/17/2022		55.22%
	High	CC17819	21.95	21.99	-0.18%	12/9/2021		

Analyzer Data

Туре	Model/Serial #
CO2 %	01449D/4385
O2 %	01449D/4385

CO2 % Correction Data

	TOTAL TOTAL													
ſ	Run #	Cma	Precal	Postcal	Pre zero	Post zero	ර	Cm	U	Cgas	Span Bias	Span Drift	Zero Bias	Zero Drift
ı	1	10.05	10.10	10.13	0.02	0.01	0.02	10.12	3.80	3.8	-0.16	0.16	0.05	-0.05
	2	10.05	10.10	10.10	0.01	0.01	0.01	10.10	4.32	4.3	0.00	0.00	0.05	0.00
Γ	3	10.05	10.10	10.10	0.01	0.05	0.03	10.10	3.61	3.6	0.00	0.00	-0.16	0.21
-	O2 % Correction Data													
Γ	Dun #	Cma	Drocal	Postcal	Pro zero	Post zero	Co	Cm		Crias	Span Rias	Span Drift	Zero Bias	Zero Drift

Run #	Cma	Precal	Postcal	Pre zero	Post zero	Ĉ	Çm	C	Cgas	Span Bias	Span Drift	Zero Bias	Zero Drift
1	12.12	12.00	12.09	0.05	0.01	0.03	12.05	15.40	15.5	0.05	0.41	0.05	-0.18
2	12.12	12.10	12.12	0.03	0.05	0.04	12.11	14.71	14.7	-0.09	0.09	-0.14	0.09
3	12.12	12.12	12.09	0.05	0.03	0.04	12.11	14.41	14.4	0.05	-0.14	-0.05	-0.09

Date:

Project #: Client:

Facility: Rockford Facility Location: Baghouse Outlet (TPU) Operator: STS

10/2/2014 M143903 Joseph Behr and Sons, Inc

Calibration Gases

							B1 - 1 B - 11	NAT 1 1 67 2	
Туре	Setting	Cylinder ID	Cylinder Value	Analyzer Response	Difference, % of Span	Expiration Date	Final Bottle Pressure,	Mid cylinder % of high cylinder	
					-0.11%	NEVER			
	Zero	Zero Nitrogen	0.00	0.02					
CO2%	Mid	CC430492	10.05	10.10	-0.27%	1/17/2022		53.74%	
""	Hìgh	CC17819	18.70	18.71	-0.05%	12/9/2021			
	Zero	Zero Nitrogen	0.00	0.05	-0.23%	NEVER			
02%	Mid	CC430492	12.12	12.10	0.09%	1/17/2022		55.22%	
~~~	High	CC17819	21.95	21.99	-0.18%	12/9/2021			

Analyzer Data

Туре	Model/Serial #
CO2 %	01449D/4385
02 %	01449D/4385

CO2 % Correction Data

	Burn # Comp   Proceal   Pr												
Run #	Cma	Precal	Postcal	Pre zero	Post zero	Co	Cm	C	Cgas	Span Bias			
1	10.05	10.10	10.10	0.02	0.01	0.02	10.10	2.11	2.1	0.00	0.00	0.05	-0.05
<del>- 2 -</del>	10.05	10,10	10.10	0.01	0.01	0.01	10.10	2.42	2.4	0.00	0.00	0.05	0.00_
3	10.05	10.10	10.10	0.01	0.05	0.03	10.10	2.90	2.9	0.00	0.00	-0.16	0.21
	O2 % Correction Data												
Run #	Cma	Precal	Postcal	Pre zero	Post zero	Co	Cm	C	Cgas	Span Bias	Span Drift	Zero Bias	
1	12.12	12.00	12.10	0.05	0.03	0.04	12.05	16.91	17.0	0.00	0.46	-0.05	-0.09
<del></del>	12.12	12.10	12.12	0.03	0.05	0.04	12.11	16.45	16.5	-0.09	0.09	-0.14	0.09
- 2	12.12	12.12	12.09	0.05	0.03	0.04	12.11	16.12	16.2	0.05	-0.14	-0.05	-0.09

#### Appendix I - Gas Cylinder Certifications

### **Airgas**.

#### **Airgas Specialty Gases**

12722 South Wentworth Avenue Chicago, IL 60628 (773) 785-3000 Fax: (773) 785-1928

#### **CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol**

Part Number:

E03NI78E15A1066

Reference Number: 54-124414028-1

www.airgas.com

Cylinder Number:

CC430492

ASG - Chicago - IL

Cylinder Volume:

151.1 CF 2015 PSIG

Laboratory:

Cylinder Pressure:

PGVP Number:

B12014

Valve Outlet:

590

Gas Code:

CO2,O2,BALN

Certification Date:

Jan 17, 2014

Expiration Date: Jan 17, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

Compo	nent	Requested Concentration	ANALYTICAL I Actual Concentration	Total Relative Uncertainty	Assay Dates			
CARBO	N DIOXIDE	10.00 %	10.05 %	G1	+/- 1.0% NIST Traceable	01/17/2014		
OXYGE	V	12.00 %	12.12 %	G1	+/- 0.8% NIST Traceable	01/17/2014		
NITROG	EN	Balance						
Туре	Lot ID	Cylinder No	CALIBRATION S' Concentration	TANDARDS	Uncertainty	Expiration Date		
NTRM	06120405	CC184974	19.66 % CARBON DIO	(IDE/NITROGEN	+/- 0.5%	May 01, 2016		
NTRM	98051016	SG9163074BAL	12.05 % OXYGEN/NITE	ROGEN	+/- 0.7%	Dec 02, 2017		
			ANALYTICAL E	QUIPMENT				
Instrum	ient/Make/Mod	del	Analytical Principle	Last M	ultipoint Calibration	·		
CO2-1 H	ORIBA VIA-510	V1E3H7P5	NDIR	Jan 15,	2014			
O2-1 HC	RIBA MPA-510	3VUYL9NR	Paramagnetic Jan 14, 2014					

Triad Data Available Upon

Request

Notes:

Approved for Release



#### **Airgas Specialty Gases**

12722 South Wentworth Avenue Chicago, IL 60628 (773) 785-3000 Fax: (773) 785-1928 www.airgas.com

#### CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number:

E03NI59E15A3452

Reference Number: 54-124408657-4

Cylinder Number:

CC17819

Cylinder Volume:

159.0 CF

Laboratory:

ASG - Chicago - IL

Cylinder Pressure:

2015 PSIG

PGVP Number:

B12013

Valve Outlet:

590

Gas Code:

CO2,O2,BALN

Certification Date:

Dec 09, 2013

Expiration Date: Dec 09, 2021.

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

		Requested Concentration	ANALYTICAL RES Actual P Concentration M	Total Relative Uncertainty	Assay Dates	
CARBON DK	OXIDĖ	19.00 %	18.70 % G	1	+/- 1.0% NIST Tracea	ble 12/09/2013
OXYGEN		22.00 %	21.95 % G	at.	+/- 0.7% NIST Tracea	ible 12/09/2013
NITROGEN		Balance				
Туре	Lot ID		CALIBRATION STAN	IDARDS	Uncertainty	Expiration Date
CO2 NTRM/O2	06120405 09061411	CC184974 CC268005	19.66 % CARBON DIOXIDE/N 22.53 % OXYGEN/NITROGEN		+/- 0.5% +/- 0.4%	May 01, 2016 Mar 08, 2019
Instrument	:/Make/Model		ANALYTICAL EQUI Analytical Principle	The second of the	ultipoint Calibration	
	BA VIA-510 V1E A MPA-510 3VU		NDIR Paramagnetic	Nov 19, Nov 21,		

Triad Data Available Upon Reques

Notes:

Approved for Release

END OF THE REPORT

### This Page Left Blank

#### Thermal Process Units and TPU Baghouse PM and Lead Emissions Test Report

Behr Iron & Metal - Rockford, Illinois

R11379

October 17, 2014

## APPENDIX B TPU PROCESS OPERATING DATA

## This Page Left Blank

## TPU Process Operating Data PM and Pb Emission Testing - October 2nd, 2014 Behr Iron & Metal - Rockford Facility

								Benr Iron & Metal - Rockford Facility											
Test I	Run Tim	nes	PRODU	JCTION	DAMPER	S (0-CLOSED;	1-OPEN)		т	EMPERATURE R	EADINGS (DEG	F)			PRESSURE RE	ADINGS (IN H2O)			
Tive	<b>T</b>	D.u.s.	TDU (***)	TDU C (15)	TDC: A	TD:: 5	DRYSS	CHARCOCO	CHANCES	CECONIDAD:	OHENCH	DACHOUSE	EXIT GAS	TD:: 4	TD:: 2	SECONDARY CHAMBER	BAGHOUSE		
7ime 9:10	Test	Runs	TPU-A(LB)	TPU-B (LB) 1,198	TPU-A	TPU-B	DRYER 0	CHAMBERA 618	CHAMBERB 435	SECONDARY 1,568	QUENCH 405	BAGHOUSE 366	<b>GAS</b> 257	TPU-A	TPU-B 0.01	-0.02	BAGHOUSE 0		
9:15				1,198	0	1	U	010	433	1,308	403	300	237		0.01	-0.02	U		
9:20				1,198	0	1	0	581	674	1,729	459	361	277	0	-0.04	-0.1	0		
9:25				1,198															
9:30				1,198	0	1	0	555	1,630	1,627	448	360	277	0	-0.03	-0.09	0		
9:35 9:40				1,198 1,198	0	1	0	541 535	1,784 1,796	1,510 1,507	433 424	356 353	264 259	0	-0.03 -0.04	-0.09 -0.1	2.4		
9:45				1,198	0	1	0	524	1,605	1,498	405	347	252	0	-0.04	-0.1	2.4		
9:50				1,198	0	1	0	519	1,494	1,477	409	344	248	0	-0.03	-0.08	2.3		
9:55				1,198	0	1	0	510	1,337	1,462	401	339	243	0	-0.03	-0.08	2.4		
10:00				1,198	0	1	0	505	1,234	1,453	407	335	240	0	-0.03	-0.09	2.3		
10:05 10:10	1	_		1,198 1,198	0	1	0	498 492	1,127 1,027	1,564 1,586	463 455	339 348	256 274	0	-0.04 -0.03	-0.1 -0.07	2.3		
10:10	Run	Run (		1,198	0	1	0	492	942	1,584	450	355	285	0	-0.03	-0.07	2.5		
10:20	Baghouse Inlet Run	let B		1,198	0	1	0	480	859	1,605	449	359	291	0	-0.02	-0.08	2.5		
10:25	lse l	Outlet		1,198	0	1	0	475	806	1,577	450	358	296	0	-0.03	-0.09	2.5		
10:30	ghor	Baghouse		1,198	0	1	0	470	756	1,587	449	356	295	0	-0.03	-0.09	2.5		
10:35	Ва	aghc		1,198	0	1	0	465	709	1,585	447	358	295	0	-0.03	-0.08	2.5		
10:40 10:45		8	1,224 1,224		1	0	0	459 470	661 636	1,583 1,585	448 451	366 367	305 301	-0.02 -0.02	0.1 0.11	-0.09 -0.08	2.5 2.6		
10:50			1,224		1	0	0	611	611	1,590	447	368	301	-0.02	0.11	-0.08	2.6		
10:55			1,224		1	0	0	910	545	1,598	450	367	301	-0.02	0.08	-0.21	2.7		
11:00			1,224		1	0	0	1,193	503	1,624	450	368	306	-0.01	0.02	-0.08	2.1		
11:05			1,224		1	0	0	1,427	484	1,651	445	365	302	-0.01	0.02	-0.1	2.3		
11:10			1,224		1	0	0	1,473	475	1,664	448	358	300	-0.01	0.02	-0.07	2.3		
11:15 11:20			1,224 1,224		1	0	0	1,463 1,528	467 461	1,672 1,675	446 453	349 344	295 292	-0.02 -0.02	0.02	-0.1 -0.09	2.3		
11:25			1,224		1	0	0	1,515	453	1,674	445	338	287	-0.02	0.02	-0.03	2.3		
11:30			1,224		1	0	0	1,506	448	1,674	451	336	285	-0.01	0.02	-0.09	2.1		
11:35			1,224		1	0	0	1,499	444	1,674	453	335	283	-0.01	0.02	-0.09	2.1		
11:40			1,224		1	0	0	1,495	439	1,683	451	334	231	-0.01	0.02	-0.1	2.1		
11:45 11:50			1,224 1,224		1	0	0	1,500 1,490	431 425	1,690 1,690	448 446	333 333	280 279	-0.01 -0.01	0.02	-0.1 -0.1	2.2		
11:55			1,224		1	0	0	1,463	423	1,689	453	333	279	-0.01	0.02	-0.09	2.2		
12:00			1,224		1	0	0	1,371	417	1,688	446	336	277	-0.01	0.02	-0.09	1.8		
12:05			1,224		1	0	0	1,302	413	1,683	451	340	277	-0.01	0.02	-0.08	2.2		
12:10			1,224		1	0	0	1,229	409	1,655	446	349	284	-0.01	0.02	-0.1	2.3		
12:15 12:20			1,224	1 250	1	0	0	1,146 1,087	404 400	1,629	450 454	354 358	288 292	-0.01	0.02 -0.03	-0.1 -0.08	2.2 3.4		
12:25			1,224 1,224	1,258 1,258	1	1	0	1,087	533	1,607 1,578	465	371	311	-0.01 -0.01	-0.03	-0.08	4.3		
12:30			1,224	1,258	1	1	0	967	940	1,590	462	379	324	-0.01	-0.02	-0.08	4.8		
12:35			1,224	1,258	1	1	0	917	1,290	1,614	463	384	332	-0.02	-0.04	-0.11	3.6		
12:40		2	1,224	1,258	1	1	0	879	1,362	1,626	442	382	330	-0.01	-0.02	-0.06	3.2		
12:45	un 3	Outlet Run 2		1,258	0	1	0	847	1,419	1,740	434	375	316	0	-0.04	-0.09	1.7		
12:50 12:55	Baghouse Inlet Run	tlet		1,258 1,258	0	1	0	826 816	1,472 1,515	1,652 1,522	432 429	370 365	298 284	0	-0.06 -0.02	-0.12 -0.07	1.2		
13:00	e In			1,258	0	1	0	816	1,511	1,463	407	358	275	0	-0.02	-0.09	1.1		
13:05	hous	isnoi		1,258	0	1	0	816	1,516	1,693	425	351	273	0	-0.02	-0.08	1.9		
13:10	Bag	Baghouse		1,258	0	1	0	811	1,517	1,800	454	347	280	0	-0.15	-0.23	1.4		
13:15		_		1,258	0	1	0	807	1,557	1,575	434	343	277	0	-0.05	-0.1	1.3		
13:20 13:25				1,258 1,258	0	1	0	801 773	1,468 1,305	1,442 1,503	420 411	337 327	268 259	0	-0.05 0	-0.12 -0.04	1.3 2.3		
13:30				1,258	0	1	0	658	1,205	1,645	459	328	269	0	-0.06	-0.12	2.7		
13:35				1,258	0	1	0	611	1,112	1,620	458	331	278	0	-0.05	-0.1	2.8		
13:40				1,258	0	1	0	583	1,033	1,595	451	331	282	0	-0.02	-0.1	3		
13:45				1,258	0	1	0	562	956	1,596	449	333	286	0	-0.05	-0.1	3.1		
13:50 13:55				1,258 1,258	0	1	0	547 536	893 843	1,598 1,601	449 454	333 333	287 288	0	-0.04 -0.06	-0.11 -0.11	3.1		
13:55				1,258	0	1	0	536 527	843 791	1,601	454 448	333	288	0	-0.06	-0.11 -0.11	3.5		
14:05				1,258	0	1	0	32.	132	_,505	7-10	333	_00	Ť	3.00	0.12	5.5		
14:10				1,258	0	1	0												
14:15				1,258	0	1	0												
14:20 14:25			1,212 1,212		1	0	0	449 649	673 682	1,616 1,603	453 457	328 339	278 383	-0.01 -0.01	0.04	-0.1 -0.12	3.3 3.5		
14:25			1,212		1	0	0	725	682	1,603	457	339	383 284	-0.01	0.04	-0.12	3.5		
14:35			1,212		1	0	0	1,040	684	1,602	447	330	286	-0.02	0.05	-0.08	2.8		
14:40			1,212		1	1	0	1,322	644	1,621	450	334	283	0	-0.02	-0.06	3.6		
14:45			1,212		1	1	0	1,399	607	1,540	466	348	296	-0.01	-0.08	-0.11	4.6		
14:50			1,212		1	1	0	1,456	571	1,506	456	365	314	-0.01	-0.06	-0.11	4.4		
14:55 15:00			1,212 1,212		1	0	0	1,407 1,497	540 506	1,517 1,603	450 444	367 361	320 310	-0.01 -0.01	0.03 -0.01	-0.13 -0.06	3 4.1		
15:05		3	1,212		1	1	0	1,497	490	1,520	459	364	316	-0.01	-0.01	-0.06	4.1		
15:10	Run 3	Run 3	1,212		1	1	0	1,458	475	1,478	452	364	323	-0.01	-0.04	-0.11	4.5		
15:15	Inlet R	Outlet	1,212		1	1	0	1,461	456	1,457	448	361	322	-0.01	-0.04	-0.1	4.7		
15:20	se In	e Ou	1,212		1	1	0	1,482	441	1,450	451	362	323	-0.01	-0.04	-0.1	4.7		
15:25 15:30	Baghouse	snou	1,212 1,212		1	1	0	1,513 1,562	426 409	1,427 1,422	450 450	358 365	339 365	-0.01 -0.01	-0.04 -0.05	-0.11 -0.11	4		
15:30	Bag	Baghouse	1,212		1	1	0	1,562	409 392	1,422	450 453	365	365 376	-0.01	-0.05	-0.11 -0.11	4.1		
15:40			1,212		1	1	0	1,777	383	1,444	453	378	381	-0.01	-0.04	-0.1	4.1		
15:45			1,212		1	1	0	1,752	372	1,436	445	379	384	-0.01	-0.04	-0.1	4		
15:50			1,212		1	1	0	1,656	361	1,420	448	381	386	0	0.01	-0.08	4.3		
15:55			1,212		1	1	0	1,569	333	1,450	454	383	388	-0.02	0.01	-0.17	2.1		
16:00 16:05			1,212 1,212		1	0	0	1,489 1,403	328 309	1,617 1,610	446 451	378 375	388 388	-0.01 -0.01	0.02	-0.12 -0.1	1.8		
16:05			1,212		1	0	0	1,403	330	1,510	448	373	388	-0.01	0.02	-0.1	1.8		
16:15			1,212		1	1	0	1,268	330	1,580	448	373	386	-0.01	-0.05	-0.08	3		
16:20			1,212		1	1	0	1,208	307	1,550	360	377	386	-0.01	-0.05	-0.1	3.5		

## TPU Process Operating Data PM and Pb Emission Testing - October 2nd, 2014 Behr Iron & Metal - Rockford Facility

	TPU Bagh	ouse Inlet Due Positions	ct Damper		TPU /	Average Ope Temperati	TPU Average Operating Data - Diff. Pressure (IN H2O)						
Run No.	TPU-A	TPU-B	DRYER	Chamber A	Chamber B	Secondary	Quench	Baghouse	Exit Gas	TPU-A	TPU-B	Secondary Chamber	TPU Baghouse
1	0	1	0	777	905	1,590	442	354	282	0	(0)	2	2.11
2	0	1	0	874	1,027	1,615	444	349	289	(0)	(0)	2	2.49
3	1	1	0	1,366	469	1,524	447	362	344	(0)	(0)	4	3.59
Average	1	1	0	1,005	800	1,576	444	355	305	(0)	(0)	3	3